木造面格子壁の動的性状に関する基礎的研究 (その2)相欠き仕口の加算則の検証とエネルギー吸収性能の把握

Basic Study on Dynamic Behavior of Wooden Grid Wall

(Part2)Verification of Adaptability of Summational Rule and Evaluation of Energy Absorption Performance of Half-lap Joint

○相川翔太³, 岡田章¹, 宮里直也¹, 廣石秀造², 冨澤彩菜³

*Shota Aikawa³, Akira Okada¹, Naoya Miyasato¹, Shuzo Hiroishi², Ayana Tomisawa³

Abstract : In this paper, firstly the results obtained from the adaptability of summational rule was verified based on results obtained from the dynamic loading test of half-lap joint. Summational rule was considered by the average envelope curves and characteristic values. Secondly an evaluate energy absorption performance of half-lap joint was evaluated by calculating the equivalent damping factor and hysteretic energy. Equivalent damping factor and hysteretic energy was calculated by the equivalent linearization method.

1.はじめに

(その2)では、相欠き仕口動的載荷実験の結果を用いて、加算則の適用性の検証を行う.また、等価粘性 減衰定数、履歴エネルギーを算出し、相欠き仕口のエ ネルギー吸収性能の評価を行う.

2. 加算則の検証

(その1)より算出した平均包絡線を用いて,加算則の 検証を行う.なお,ここでいう加算則は,「相欠き仕口 の荷重変形性能を累加すること」と定義する.評価にあ たり,仕口数を基準化するため,仕口がひとつのType1 は曲げモーメントMを3.0倍,仕口が2つのType2@300, Type2@600はMを1.5倍した.載荷速度毎の加算則の結果 をFig.1に示す.また,Fig.1の結果を用いて,各試験体 の特性値を算出した.特性値の算出結果をTable.1に示 す.各載荷速度において,基準化したM-6関係及び各特 性値は概ね一致している.よって動的載荷時において も,仕口の剛性・耐力は仕口の個数に比例して増加する と考えられることから面格子壁の剛性・耐力は仕口数に より推測が可能であることが示唆された.

3. 相欠き仕口のエネルギー吸収性能

相欠き仕口の等価粘性減衰定数heq,履歴エネルギー ΔWを算出し、相欠き仕口のエネルギー吸収性能の評価 を試みる.なお、各値はFig.2に示す等価線形化法^[5]を 用いて、各回転角毎の2,3,4,5,10,20,30,40,50サイク ル目の値を算出し、試験結果3体の平均値を求めた.

1) 載荷速度による比較

試験体種類別のheqをFig.3に示す.各試験体のheq は、回転角 θ =1/120(0.008)rad時にばらつきが生じて いる.これは、載荷速度が大きい場合、初期の回転角 では初期スリップを生じたため、安定した履歴ループ を描けていないことが要因として考えられる.しか し、各試験体・各載荷速度ともに回転角の増加に伴 い、0.10~0.15の範囲に収束する傾向が確認された.

試験体毎のΔWをFig.4に示す.各試験体とも載荷速 度に関わらず概ね一致する結果となり,1,10,30,50kine の範囲では載荷速度による影響は確認できなかった.

2) 仕口数・仕口間隔による比較

載荷速度毎のheqをFig.5に示す.heqは,各載荷速度 1、日大理工・数昌・建築 2、日大年大・数昌・建築 3、

Fig.2 Equivalent Linearization Method^[5]

1:日大理工・教員・建築 2:日大短大・教員・建築 3:日大理工・院(前)・建築

において, 試験体の種類に関わらず, 概ね一致しており, 仕口数及び仕口間隔に依存せず, heqは一定の値を示すことが把握された.よって, 仕口を複数有する面格子壁のheqは相欠き仕口の結果より推測が可能であることが示唆された.

載荷速度毎の Δ WをFig.6に示す.一例として, lkine, θ =1/7.5(0.133)rad時の各試験体の Δ WをType1と 比較すると,Type3@300は2.48倍,Type2@300は1.74 倍,Type2@600は1.69倍,TypeTは1.08倍となっている (Fig.6-a).また,他の載荷速度・回転角において も,仕口数の増加に伴い Δ Wは大きくなる傾向となっ た.一方,Type2@300とType2@600は概ね一致している ことから, Δ Wは本試験条件の範囲内では仕口間隔に 依存しないと考えられる.また,Type1とTypeTの Δ W は概ね一致する結果となった.

4. まとめ

本報で得られた知見を以下に示す.

- ・1, 10, 30, 50kineの範囲ではheq・ムWに載荷速度による影響は確認できなかった.
- ・heqは各試験体とも一定の値に収束することが確認され、加算則が成立することから、必要な耐力に応じて 面格子壁の仕口数を選択できることが示唆された.

今後の検討として,面格子壁の動的性状の把握など が挙げられる.

【参考文献】

[1]岩田,他:「在来軸組工法木造住宅の構造設計手法の開発(その60)」,日本建築学会大会学術講演梗概集,C-1,構造Ⅲ,pp.377-378,2002.8 [2]野本,他:「木質構造の動的性能に関する研究(その1)」,日本建築学会

大会学術講演梗概集,C-1,構造Ⅲ,pp.19-20,2001.7 [3]星野,他:「相欠き仕口を用いた木造面格子壁の基本的構造特性に関す

る研究(その2)」,日本建築学会大会学術講演梗概集,構造Ⅲ, pp.329-330,2015.9

[4]日本建築学会編:限界耐力計算による伝統的木造建築物構造計算指 針・同解説,第1版第1刷,丸善出版,pp.102-104,2013.2

[5]木造軸組構法建物の耐震設計マニュアル編集委員会:伝統構法を生かす木造耐震設計マニュアル-限界耐力計算による耐震設計・耐震補強設計法,第1版第6刷,学芸出版社,pp.34-37,2011