L-11

矩形たわみ振動板と剛壁が一体構造の空中超音波音源の開発 ー剛壁の有無による振動分布及び音圧分布の検討-

Development of ultrasonic source combined with rectangle vibrating plate and rigid wall —Study of vibration distribution and sound pressure distribution of the source with/without rigid wall —

○佐藤 諒¹, 倉富 涼², 淺見拓哉³, 三浦 光³ *Ryo Sato¹, Ryo Kuratomi², Takuya Asami³, Hikaru Miura³

Abstract: As a sound source that emits powerful ultrasound into the air, there is a sound source using striped mode rectangular vibrating plate. We study the sound source combined a rigid wall and a vibrating plate. In this paper, transverse vibration distribution of the vibrating plate combined the rigid wall and its sound pressure distribution were examinated.

<u>1. はじめに</u>

空気中へ強力な超音波を放射する音源として, 縞モ ード矩形たわみ振動板型音源や格子モード方形たわみ 振動板型音源などがあり, これらの音源を用いて煙霧 質の凝集や消臭など様々な分野に利用されている^[1].し かし, これらの利用では音源と複数の反射板を用いる ことが多く, 装置を構成する要素が多いことや, 他の 部分との固定等, 装置構成を考えた際に問題があった.

そこで、これらの問題を解決するため、壁面と振動 板を一体化させた音源を考えた.具体的には、縞モー ド矩形たわみ振動板の節線と平行な辺に、剛壁とみな した壁面を一体構造で形成した形状である.この音源 の利点は、振動板と壁面が一体化しているため、閉じ た空間の構築が容易なことや、剛壁を他の装置に固定 できること、装置が簡略化できることである.これま でに、剛壁の設置位置は、振動板を自由に振動させた 状態のたわみ振動の節付近の位置が良いことを明らか にしている^[2].

ここでは、剛壁を設置した際の振動板のたわみ振動 分布、及び音圧分布について、剛壁がない場合との比 較を行った.

2. 空中超音波音源

図1は検討に用いた空中超音波音源の概略である. 図に示すように,超音波音源は20kHz用ボルト締めラ ンジュバン型振動子,振幅拡大用エキスポネンシャル ホーン(ジュラルミン製),及び縦振動共振周波数調整用 の伝送棒(直径 8mm)をネジで結合し,その先端に矩形 たわみ振動板(ジュラルミン製)をネジで固定したもの である.座標軸は図中のように定義した.

図 2 は使用した矩形たわみ振動板の概略である.振動板には板厚 1.2 mm のジュラルミンを使用し, 縞モー

ドの節間隔 d は 11.9 mm, 節線の数は 10 本とした. 図 中の破線はたわみ振動の節線である. 各部の寸法は図 中に示すとおりである. この振動板は周波数 20.2 kHz で共振となり, 縞モードになる.

Figure 3. Fixing tool of both sides of the vibrating plate.

3. 固定に使用した器具

振動板と剛壁を一体構造で作成したモデルを検討す るために、ここでは振動板の振動を抑えるための器具 (固定器具)を用意した.図3は固定器具(高さ10mm)を 振動板の両端に取り付けた様子である.振動板の両面 をブロックではさみ、ネジで締めることで振動を抑え、 固定した.

4. 固定した際の振動板のたわみ振動分布

図3は、上述の他に、固定器具を取り付ける位置(固 定位置)を、たわみ振動の節付近の位置である振動板 の端から13.5 mmとした場合のクラドニの砂図も表し ている.図中の黒い線状の部分が砂であり、振動の節 の位置を示していることから、両端を固定した場合で も節が線状の縞モードが得られていることが分かる.

次に、たわみ振動分布の検討を行った.振動分布の 測定は、駆動電力0.5W,駆動周波数20.2kHz一定で、 短辺の長さの4分の1となる線(Fig.2の赤い一点破線) 上の位置について、レーザードップラ振動計を用いて 行った.図4はその結果である.図は、横軸に振動板 の端からの距離を、縦軸に振動変位を示している.振 動変位は、それぞれの場合での測定ライン上の中心点 の値で規格化したものである.図中の黒線は固定器具 を取り付けていない場合の振動分布を、青線は13.5 mm に固定器具を取り付けた場合の振動分布を示す.図よ り、13.5 mm に固定器具を取り付けた場合の振動分布 は、固定器具を取り付けていない場合の振動分布と、 ほぼ同じになることが分かる.

5. 固定の有無による音圧分布

固定の有無による音圧分布への影響を知るための検 討を行った.音圧分布の測定は,駆動電力0.5W,駆動 周波数20.2 kHz 一定で,短辺の長さの4分の1となる 線(Fig. 2の赤い一点破線)上のXZ平面を,プローブ付 きマイクロホン (ACO, TYPE-7017)を用いて行った. 図5は固定器具を取り付けない場合,図6は固定器具 を振動板の端から13.5 mmに取り付けた場合の結果で ある.音圧はマイクロホン出力電圧の最大値で規格化 した値をカラーマップで示している.図より,音圧分 布は振動板の編モード振動の腹及び節にそって放射さ れた音波が振動板の垂直(Z軸)方向に分布している ことが分かる.また,固定器具による音波の反射が多 少見られるが,ほぼ同じ分布になった.

<u>6. おわりに</u>

矩形たわみ振動板における,固定器具を取り付けた 場合の振動分布と音圧分布について検討を行った.そ の結果,固定器具を取り付けていない場合と,たわみ 振動の節に固定器具を取り付けた場合の振動分布およ び音圧分布は、ほぼ同じになることが分かった. 参考文献

- [1] 内藤広基, 淺見拓哉, 三浦 光, 音講論集 pp.1213-1214, 2015.3.
- [2] 佐藤 諒,淺見拓哉,三浦 光,音講論集 pp.1143-1144, 2015.9.

Figure 4. Relationship between distance from the end and vibration amplitude.

Figure 5. Sound pressure distribution without fixing tool.

Figure 6. Sound pressure distribution with fixing tool.