微小金円柱の電磁波散乱解析 -円柱サイズと非局所的効果-Analyis of Electromagnetic Scattering from a Gold Nano Cylinder -Non Local Effects due to the Cylindrical Size-

○渡部慎太郎¹,長澤和也¹,大貫進一郎²

*Shintaro Watanabe¹, Kazuya Nagasawa¹, Shinichiro Ohnuki²

Abstract: We study electromagnetic scattering from a gold nano cylinders. Exact solutions are derived for the Drude and Hydrodynamic drude models. The non-local effects are investigated for varying the cylindrical size.

1. はじめに

近年,微小金粒子の光学応答が,現在広く用いられる Drude 光学応答モデル(DM)を用いた解析値と実験値とで,差異を生じることが報告された^[1].この原因は 非局所的効果の影響であり,新しくHydrodynamic drude 光学応答モデル(HDM)が提案された.本論文では, HDM の二次元金円柱のサイズを変化させ,非局所的効 果が光学応答に及ぼす影響を明らかにする.

2. 解析手法

本報告では, Fig.1 に示す自由空間中に置かれた二次 元金円柱に H 波を入射した際の厳密解を, DM 及び HDM に対してそれぞれ求め,全断面積の比較を行う ^[2-3].

2.1 円柱内部外部の電界

入射電界を Eⁱ, 散乱電界を Eⁱ とすると次のように定 義される.

$$\mathbf{E}^{i} = \left(j/k_{0}\right) \sum_{n=-\infty}^{\infty} j^{n} \mathbf{M}_{n}\left(k_{0}a\right)$$
⁽¹⁾

$$\mathbf{E}^{s} = \left(j/k_{0}\right)\sum_{n=-\infty}^{\infty} j^{n} a_{n} \mathbf{M}_{n}\left(k_{0} a\right)$$
⁽²⁾

ここで, *k*₀:自由空間中の波数, *a*: 円柱半径, *a*_n: 未 知散乱係数である. 更に, **M**_n は円筒座標系のベクトル 関数であり, 次式より表される.

$$\mathbf{M}_{n} = \nabla \times [\mathbf{a}_{z} Z_{n}(kr) \exp(jn\theta)]$$
(3)

ここで、 $Z_n(kr)$ は特殊関数でありそれぞれ Bessel 関数 $J_n(kr)$ または、第二種 Hankel 関数 $H_n^{(2)}(kr)$ を用いる.また、 θ は観測角である.

Figure 1. Computational geometry and coordinate systems

DM の場合,円柱内部の電界は,以下の式となる.

$$\mathbf{E}^{T} = \left(j/k_{T}\right)\sum_{n=-\infty}^{\infty} j^{n} g_{n} \mathbf{M}_{n}\left(k_{T} a\right)$$
(4)

ただし、 k_T :波数、 g_n : 未知展開係数である. 円柱内部 が HDM の場合、式(3)で表される横モードの電界に加 えて、次式により定義される縦モードの電界を考慮す る.

$$\mathbf{E}^{L} = \left(j/k_{0}\right) \sum_{n=-\infty}^{\infty} j^{n} h_{n} \mathbf{L}_{n} \left(k_{T} r\right)$$
(5)

ここで、 h_n : 未知展開係数、 L_n : 円筒座標系のベクト ル方関数であり、 L_n は次式となる.

$$\mathbf{L}_{n} = \nabla [Z_{n}(kr)\exp(jn\theta)]$$
(6)

2.2 円柱内部外部の磁界

円柱外部の磁界として入射磁界 Hⁱ 及び散乱磁界 Hⁱ は次のように定義される.

$$\mathbf{H}^{i} = \left(\sqrt{\varepsilon_{m}} / k_{0}\right) \sum_{n = -\infty}^{\infty} j^{n} \mathbf{N}_{n}(k_{0}a)$$
⁽⁷⁾

$$\mathbf{H}^{s} = \left(\sqrt{\varepsilon_{m}}/k_{0}\right) \sum_{n=-\infty}^{\infty} j^{n} a_{n} \mathbf{N}_{n}(k_{0}a)$$
(8)

ここで、 ϵ_m :自由空間中の比誘電率、 N_n :円筒座標系 のベクトル関数であり、次式となる.

1:日大理工・院(前)・電気 2:日大理工・教員・電気

(9)

$$\mathbf{N}_n = (1/k) \nabla \times \mathbf{M}_n$$

円柱内部の磁界は、次式により求まる.

$$\mathbf{H}^{T} = \left(\sqrt{\varepsilon_{m}}/k_{0}\right) \sum_{n=-\infty}^{\infty} j^{n} g_{n} \mathbf{N}_{n}(k_{T}a)$$
(10)

以上で定義された電磁界を,円柱の表面(r=a)において 電磁界の接線成分連続および,法線成分連続の条件を 満足するように,未知係数 a_n, g_n,及び h_nを決定する.

3. 解析結果

本報告では,全断面積を厳密解より求め,DM と HDM の比較を行う.全断面積 *Ce* は上述で求めた未知 係数 *a*_nを用いて以下の式より表される.

$$Ce = -(2/k_0 a) \sum_{n=-\infty}^{\infty} \operatorname{Re} a_n \tag{11}$$

Fig.2 に, 半径 *a* = 100 nm としたときの全断面積を示 す. DM と HDM は図上で完全に一致することを確認 した.

Fig.3 に半径 *a* = 1 nm としたときの結果を示す. 図より, HDM の共振ピークが DM と比べると小さくなり, 共振波長も短波長側にシフトした. 更に,短波長側で HDM の結果は小さく共振していることがわかった. HDM では, 円柱内部の電界を横モードに加えて縦モー ドも考慮しているため,短波長側での小さな共振ピー クが確認できる.

Table 1 は Fig.3 中の DM のピーク値における打切り 項数 Nh = 80 としたときの計算結果を真値とし,打切 り項数を変化させた際の相対誤差の結果である.両者 は Nh = 3 以上とすれば有効桁数の範囲で完全に収束す ることがわかる.

4. まとめ

自由空間中に置かれた二次元金円柱に H 波を入射し た際の全断面積を厳密解より求め, DM 及び HDM の 比較を行った.その結果,半径が 100 nm の場合,両者 は図上で良く一致した.しかし,半径を1 nm とすると, 共振ピーク及び共振波長に差異を生じることが確認で きた.更に,HDM では短波長側で小さく共振すること がわかった.

5. 謝辞

本研究の一部は、私立大学戦略的研究基盤形成支援 事業の援助を受けて行われた.

Figure 3. Extinction width for a = 1 nm.

Table 1. Relative error for varying the truncation number Nh

Nh	相対誤差	
	DM	HDM
1	1.513×10^{-7}	7.508×10^{-8}
2	7.034×10^{-12}	2.000×10^{-12}
3	5.724×10^{-16}	2.677×10^{-17}

6. 参考文献

[1] C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumoc,

A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry,

A. Chilkoti, and D.R. Smith : "Probing the Ultimate Limits of Plasmonic Enhancement", Science, Vol. 337, No. 6098, pp. 1072—1074, August, 2012.

[2] R. Ruppin, : "Extinction properties of thin metallic nanowires", Optics Communications, Vol. 190, pp. 205—209, April 2001.

[3] 渡部慎太郎,長澤和也,大貫進一郎,:"微小金属円 柱における近傍界の電磁界解析-非局所的効果を考慮 した誘電体モデルー",電子情報通信学会,2015 年ソ サイエティ論文集,C-1-10.