L-67

積層セラミック磁気回路を用いた 5mm 角 MEMS エアタービン発電機の最適化

Optimization of 5 mm Square MEMS Air Turbine Generator Using Multilayer Ceramic Magnetic Circuit

○三島海斗¹, 横関裕司², 高藤美泉³, 齊藤健³, 内木場文男³ *Kaito Mishima¹, Yuji Yokozeki², Minami Takato³, Ken Saito³, Fumio Uchikoba³,

Abstract: This paper proposed a MEMS air turbine generator that combined with a MEMS technology and a multilayer ceramic technology. The developed air turbine has realized the downsizing by using the MEMS process. However, this process is difficult to introduce a miniature three-dimensional structure coil and a magnetic material. Therefore, magnetic circuit is used a multilayer ceramic technology to solve these problems. This technology that has been used for a miniature electric element can form the miniature three-dimensional structure coil with the magnetic core. In this paper, two type magnetic circuits were fabricated, and these were discussed about the optimal structure for the MEMS generator.

1. はじめに

半導体加工技術や実装技術などの発展により携帯通 信機器の小型化や、演算処理能力・通信速度の著しい 向上がみられる.しかし一方で,消費電力は増加しそ れを補うためのバッテリーは端末の体積の多くを占め るものとなっている.通信機器に用いるような小型な 電源として、半導体作製技術を応用した MEMS(Micro Electro Mechanical Systems)工程を用いた小型発電機が 注目されている^[1]. MEMS 発電機の発電方式には平面 方向のパターニングに適した静電方式を採用すること が多いが^[2],出力インピーダンスが高いことから大電 流を取り出すことが困難という課題がある.また,電 磁誘導方式を採用することで高出力を得ることができ るが、MEMS 工程では磁気回路に用いる巻線コイルの ような三次元方向への配線は困難である.より多くの 磁束を取り込むためには磁性材料を用いたコイルコア の導入が望まれるが、MEMS 工程ではシリコン材料を 基本としているため、コアの導入が困難である.

そこで我々は三次元配線と磁性コイルコアの導入を 同時に行うため、小型素子作製技術である積層セラミ ック技術に着目した.積層セラミック技術はシート状 のセラミックに導体パターンを形成し、積層すること で内部に三次元配線を行う技術である.本研究では、 積層セラミック磁気回路と MEMS エアタービンを組 み合わせた 5mm サイズの電磁誘導式発電機を開発し、 さらに二種類の磁気回路を用いてその出力を比較する ことで、最適な磁気回路構造について検討を行った.

2. MEMS エアタービン発電機の設計

MEMS エアタービン発電機の発電方式は界磁回転型の電磁誘導方式とし、Y 字結線の三相交流発電を採用

した. MEMS 工程で作製したエアタービンと積層セラ ミック技術を用いて作製した磁気回路を上下で組み合 わせ,磁石とヘリカルコイルが対向するアキシャルギ ャップ型とした. Figure 1 に電磁誘導式 MEMS エアタ ービン発電機の模式図を示す.また,それぞれの設計 を以下に記す.

generator

2.1. MEMS エアタービンの設計

Figure 2. Structure of the MEMS air turbine

Figure 2 に作製したエアタービンの構造を示す. これ らの部品はフォトリソグラフィプロセスによりシリコ ンウェハにパターニングを行うことで作製した. 上部 の流入口から圧縮空気を流入することでロータ翼部に

1:日大理工・精機 2:日大理工・院(前) 3:日大理工・教員・精機

空気をあて、回転運動を与える構造としている.ター ビンは平面構造で作製可能なラジアル型タービンとし、 ロータ底面に4極磁石を接着することで回転磁界を発 生させる.またロータは軽量かつ微細な構造となるた め、摩擦抵抗の小さい空気軸受を採用した.

2.2.積層セラミック磁気回路の設計

積層セラミック磁気回路の作製にはシート工法を用 いた. スルーホールを成形したセラミックシートにパ ターンを印刷し,積層,圧着,焼成を行い作製した. 内部配線に低抵抗の銀を用いるため、セラミックには 高透磁率かつ低温同時焼成を実現する NiCuZn フェラ イトを採用した.また,磁気回路はY字結線の三相交 流発電とするため、12回巻の6個のヘリカルコイルパ ターンを配置し、対向するコイルと組み合わせて24回 巻の3組のコイルとした.本研究では最適な磁気回路 構造について検討するため, Figure 3 のような構造の異 なる二種類の磁気回路を作製した.一体型磁気回路は 一層ごとに 6 つのコイルパターンを同時に形成するた め,一度の積層工程で作製できる単純な構造となって いる.分割型磁気回路はコイル部と土台部に分けて積 層し、コイルを6つに分割した後に土台部と合わせて 積層して作製した. コイル間の余分な磁性体を除去で きるが, 複数の積層工程を必要とする. これらの磁気 回路構造について磁場解析を行い、磁束の誘導の効率 について検討を行った.

circuits

3. 結果および考察

磁場解析の結果を Figure 4 に示す. 一体型磁気回路 はコイル間の磁性体に磁束が漏えいしてしまっている のに対し,分割型磁気回路は効率的にコイル内に磁束 を誘導できていることが確認できた. 次に発電効率を 比較するため,スピンドルマシンを用いて磁気回路の 発電実験を行った. 回転数 380000rpm,磁石と磁気回 路のギャップを 100μm,負荷抵抗が 1Ω のとき一体型 では 0.63mVA,分割型では 4.24mVA の出力を得た.こ れらの結果からコイル間の磁性体を除去した分割型磁 気回路が発電機に適しているとわかる.また作製した MEMS エアタービン発電機を Figure 5 に示す.磁気回 路には分割型を用いた.タービンに圧縮空気を挿入し 発電実験を行った結果,回転数 18000rpm,負荷抵抗 1Ω で出力 1.42μVA を得た.

Figure 4. Results of analysis of the magnetic flux

Figure 5. Fabricated MEMS air turbine generator

4. 結論

MEMS と積層セラミック技術を組み合わせた MEMS 発電機の開発を行った.磁気回路構造を検討し た結果,コイル間の磁性体を取り除いた分割型が適し ていることがわかった.より高い発電効率を得るため には磁束の発散を抑えることが必要である.今後磁気 回路に非磁性材料を導入することと,磁石と磁気回路 のギャップを小さくすることでより高い発電効率の実 現を目指す.

5. 参考文献

[1] A. H. Epstein : "Millimeter-Scale, MEMS Gas Turbine Engines", Proceedings of ASME Turbo Expo 2003 Power for Land, Sea and Air, GT-2003-38866, pp.1-28, 2003.

[2] 原田 敬史,田中 秀治,江刺 正喜:「エレクト レットを用いた高出力静電モータ・発電機の設計」,電 学論 E, Vol.123, No.9, pp.331-339, 2003

謝辞

本研究は、日本大学のマイクロ機能デバイス研究センターの支援を受けました.