状態式を用いた CO2 を含む 2 成分系高圧混合熱データの相関

Correlation of heat of mixing for binary systems using equation of state

○小林智啓¹,栗原清文²,松田弘幸²,栃木勝己³

*Tomohiro Kobayasi¹, Kiyohumi Kurihara², Hiroyuki Matsuda², Katsumi Tochigi³

Abstract: The heat of mixing (ΔH^M) of the binary carbon dioxide + organic solvent systems at near the critical point of carbon dioxide can obtain the large heat effects. The object of this work is to search that equation of state correlate ΔH^M for the using a flow isothermal microcalorimeter. Experimental ΔH^M data within the one-phase region were correlated with the Peng-Robinson (PR) equation of state (EOS) coupled with the conventional mixing rule. This model gave reasonable correlation at the range of temperatures and pressures studied.

1.緒 言

近年、二酸化炭素(CO₂)は環境に優しい溶媒¹⁾として 期待され、ポリマーの合成や溶媒抽出といった種々の プロセスの開発に関する研究が進められている.本研 究室でも超臨界点近傍の CO₂を含む混合系の示す混合 熱(ΔH^{M})に注目し、その省エネルギーサイクルシステ ムへの応用を検討しており、このサイクルシステムに 必要な基礎データとして ΔH^{M} の測定を行っている.そ の結果、CO₂ 超臨界点近傍 (T_{c} =304.2 K, P_{c} =7.376 MPa) ²⁾の範囲において CO₂+アルコール、エステル、エーテ ル系 10 種 84 データセットについて測定を終了してい る³⁻⁵⁾.その中で特に、CO₂+エステル、エーテル系で は最大 7.5 kJ mol⁻¹以上の大きな発熱を示し、条件によ っては気液二相領域が確認された.

本研究では, 発熱が大きい 5 種の 2 成分系 CO₂+ ethyl acetate, + tert-butyl methyl ether, + diethyl carbonate, + diisopropyl ether, + dimethyl carbonete を対象に, 温度 298.15-308.15 K, 圧力 5.0-7.5 MPa の範囲で実測した Δ H^{M} データの相関を 3 次型状態式を用いて検討をした. 今回は 3 次型状態方程式として Peng-Robinson 状態式^の (PR-EOS)を, 状態式中の混合則には異種分子間の相互 作用を表す修正係数 k_{ij} を含む conventional mixing rule を用いた.また,決定した相互作用パラメータ k_{ij} を用 いて,気液二相領域を形成する組成の推算を行ったの で合わせて報告する.

2. 相関式

本研究では高圧 ΔH^{M} データの相関に式(1)に示す 3 次型状態式である PR-EOS 60 を用いた.

$$P = \frac{RT}{v-b} - \frac{a}{v(v+b) + b(v-b)}$$
(1)

式中のPは圧力, Rは気体定数, Tは温度, v混合物の モル容積, a, bはそれぞれ混合物のエネルギーパラメ ータおよびサイパラメータである. この式(1)を用いて, ΔH^{M} を計算する場合にはa,bの混合則が必要である. そこで本研究では, a, b の混合則として式(2), (3)に 示す conventional mixing rule を採用した.

$$a = \sum_{i}^{NC} \sum_{j}^{NC} x_{i} x_{j} \sqrt{a_{ii} a_{jj}} (1 - k_{ij})$$
(2)

$$b = \sum_{i}^{NC} x_i b_i \tag{3}$$

式中の NC は成分数, k_{ij} は修正係数と呼ばれる異種分子間の相互作用を表すパラメータ, a_{ii} , b_i は純物質のエネルギーパラメータおよびサイズパラメータであり, a_{ii} , b_i は以下の式を用いて計算される.

$$a_{ii} = a_{ci}\alpha_i \tag{4}$$

$$a_{ci} = \frac{0.45724R^2 T_{ci}^2}{P_{ci}}$$
(5)

$$\alpha_i = \{1 + m_i (1 - \sqrt{T_{ri}})\}^2 \tag{6}$$

$$m_i = 0.37464 + 1.5422\omega_i - 0.26992\omega_i^2 \quad (7)$$

$$b_i = \frac{0.07780RT_{c,i}}{P_{c,i}} \tag{8}$$

式中の T_{ci} , P_{ci} , ω_i はそれぞれ純物質の臨界温度,臨 界圧力,偏心係数であり, 各成分について,これらの 値は DDB2015 の収録されている値を引用した.

さて、*ΔH^M* は式(1)-(8)を用いると、熱力学的に次の ように表される.

^{1:}日大理工・院・応化 2:日大理工・教員・応化3:日大・名誉教授

$$\Delta H^{M} = -\frac{T\left(\frac{\partial a}{\partial T}\right)_{v,x_{i}} - a}{2b\sqrt{2}} \ln\left[\frac{v + (1 - \sqrt{2})b}{v + (1 + \sqrt{2})b}\right] + \sum_{i}^{NC} x_{i} \frac{T\left(\frac{\partial a_{ii}}{\partial T}\right)_{v_{i}} - a_{ii}}{2b_{i}\sqrt{2}} \ln\left[\frac{v_{i} + (1 - \sqrt{2})b_{i}}{v_{i} + (1 + \sqrt{2})b_{i}}\right] + P\left(v - \sum_{i}^{NC} x_{i}v_{i}\right)$$
(9)

$$\left(\frac{\partial a}{\partial T}\right)_{v,x_i} = -\frac{1}{2} \sum_{i}^{NC} \sum_{j}^{NC} x_i x_j \left(1 - k_{ij}\right) \left[m_j \left(\frac{a_{cj} a_{ii}}{T_{cj}T}\right)^{0.5} + m_i \left(\frac{a_{ci} a_{jj}}{T_{ci}T}\right)^{0.5} \right]$$
(10)

$$\left(\frac{\partial a_{ii}}{\partial T}\right)_{v_i} = -\frac{a_{ci}m_i}{\sqrt{T_{ci}T\alpha_i}}$$
(11)

本研究では、各系において温度ごとに均一相領域のデ ータを用いて、式(14)を目的関数(F_{obj})とし、目的関数が 最小になるように k_{ij} を決定した.

$$F_{\rm obj} = \sum_{i=1}^{\rm NDP} (\Delta H^M_{\rm exptl} - \Delta H^M_{\rm calct})^2_m$$
(12)

なお、式中の NDP はデータ数、 ΔH^{M}_{expl} と ΔH^{M}_{calct} はそれぞれ ΔH^{M} 実測値と計算値である.

3.相関結果

本研究で相関対象とした 5 種の 2 成分系については いずれも、温度 298.15-308.15 K, 圧力 5.0-7.5 MPa の範 囲で実測した ΔH^{M} データが発熱を示し、温度の減少と 共に発熱量が増大し、条件によっては気液二相領域が 出現した. Fugure 1 に PR-EOS⁶による相関結果の一例 として、CO₂ + ethyl acetate の結果を実線で示すが、図 中 ΔH^{M} が CO₂ に対して直線的に変化する領域が気液 二相領域である. 均一相領域の実測値と相関値との相 対平均偏差 (Δ_1) を図中に示すが実測値と相関値の一 致はほぼ良好であった. これは他の 4 系についても同 様であった.

また、本研究では気液二相領域を形成する液相組成 の推算を、 ΔH^{M} データから決定した.修正係数 k_{ij} を用 いて検討した.この組成は CO₂が第2成分に溶解でき る限界組成であり、すなわち、溶解限界組成であり、 換言すれば、気液平衡にある液相組成を表す.そこで PR-EOS⁶⁰を用いて5種の系の温度、圧力ごとに高圧気 液平衡の推算を行い、溶解限界組成を推算した.その 結果を図中に□で示す.また、図には均一相領域につ いては式(13)に示す修正 RK 式⁷⁰を、気液二相領域には 式(14)の組成の一次式を適用して温度、圧力ごとに決定 したパラメータを用いて、溶解限界組成を式(13)、(14) の交点として求めた結果を〇で示す.

図に示すように必ずしも両者は一致していないが, 図に示すような精度で状態式により溶解限界組成を推 算することが可能であった.

$$\Delta H^{M} = x_{1}(1-x_{1})\sum_{i=0}^{N-1} \frac{a_{i}(2x_{1}-1)^{i}}{1-\ell(2x_{1}-1)}$$
(13)

$$\Delta H^M = A + Bx_1$$

Figure 1. Experimental and correlated result of ΔH^{M} for CO₂ + ethyl acetate system at 298.15-308.15 K and 5.0-7.0 MPa **4.** 参考文献

4. **3**-5 XMX 1) Zahran F. et al.; J. Chem. Eng. Thermodynamics **51** 59-64 (2012).2) The Dortmund Data Bank (DDB), DDBST Software and SeparationTechnology; GmbH Oldenburg: Germany, Version2015. 3) Matsuda H. et al.; Fluid Phase Equilibria **236** 146-155 (2005).4) Matsuda H. et al.; J. Chem. Eng. Data **50** 1419-1424 (2005). 5) Kurihara K.et al; Fluid Phase Equilib. **362** 313–317(2014)6) D. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. **15** 59-64 (1976).7) Myers D. B., Scott R. L.; Ind. Eng. Chem. **55** 43-46 (1963).