上部構造の目標応答性能を満足する免震設計法に関する研究 その3 目標応答変位に対する免震設計方法例

Research on the base isolation design method satisfied the target response of the superstructure

Part3 A example of base isolation design for the target response displacement

○高鹿雅樹³, 秦一平¹, 黒田竜司² *Masaki Koroku³, Ippei Hata¹, Ryuji Kuroda²

The purpose of this study is to extend the method of base isolations design for a high-rise building using the Seismic Performance Design Diagram. This paper describes the simple design method that converts mode parameters into actual model parameters by formulas and charts.

3.1. はじめに

本報では、Figure3.1 に示すように上部構造の固有周 期により免震層性能に影響がある免震構造の簡易設計 方法について述べる.例として高層モデルの場合は、 Figure3.1 に示すように、免震層等価周期 *T*_{eq,b}と上部構 造の1次固有周期 *T*_{s,lst}の比が2.0以下になるケースが ほとんどである.そのため、本研究で提案している「応 答性能設計図表を用いた免震設計方法」¹⁾を適用するた めには、モード座標系にて対応させる必要がある.そ のため、提案設計方法において、モード系から実モデ ルへの変換においては、複素固有値解析の収斂計算が 必要となる.そこで、本報では収斂計算を必要としな い「変換倍率式」を提案し、その設計例を示す.

3.2. 設計方法例

上部構造の1次固有周期と免震層の等価周期が近い 免震建物の設計例を示す.目標クライテリアは,免震 層の変形を対象とする.

3.2.1. 上部構造を含む免震建物の仮定

Table3.1 に示す 41 層のモデルに対して、 $T_{eq,b}$ から免 震層の等価剛性を決定する.上部構造は 41 層の弾性モ デルとし、減衰係数は 1 次モードの剛性比例型で 2% を付与する.総質量 $m_s=69,972$ [ton]、1 次固有周期 $T_{s,ls}=2.78$ [s]である.また、上部総質量と免震層の質量 比 $\hat{m}=0.95$ とし、免震層質量 $m_b=3,683$ [ton]を(3-1)式よ り求める.免震層を含む 1 次等価周期を $T_{eq,ls}=5.39$ [s] とし、(3-2)式より免震層の等価周期 $T_{eq,b}=4.78$ [s]を求め る.周期比 $T_{eq,b}T_{s,ls}=1.72$ となり Figure 3.1 より,剛体置換不可能範囲となる¹⁾.

$$T_{eq,b} = 2\pi \sqrt{\frac{\hat{m}m_b \left(\omega_{eq,1st}^2 m_s - k_{s,1st}\right)}{\left(\omega_{eq,1st}^2 \hat{m}m_b\right)^2 - \omega_{eq,1st}^2 \hat{m}m_b k_{s,1st}}}$$
(3-2)

3.2.2. 設計用入力地震動の応答スペクトルの読取

次に複素固有値解析より、1、2 次モードの等価周期 T_{eq.1s}=5.39[s], T_{eq.2nd}=1.44[s]及び Figure 3.3 に示す刺激関

数を求めた.その結果より、1次 有効質量 \overline{M}_{1st} =72,600[ton]となり、 (3-3) 式より 1 次有効剛性 \overline{K}_{1st} =98,655[kN/m]を求める. そして、入力地震動は、 BCJ-L2(75kine 基準化)とする. Figure 3.4 の応答スペクトルより、 $T_{eq.1st}, T_{eq.2nd}$ の擬似速度応答スペク トル_pS_{v40,1st}=0.536[m/s], _pS_{v40,2nd}= 0.614[m/s] また、入力変位

D_{40,1st}=0.459[m], D_{40.2nd}=0.141[m]を求める.

$$\overline{K}_{1st} = \left(\frac{2\pi}{T_{eq,1st}}\right)^2 \cdot \overline{M}_{1st}$$
(3-3) $D_{40,j} = \frac{{}_p S_{\nu,40,j}}{\omega_{eq,j}}$ (3-4)

1:日大理工・教員・建築 2:日大理工・院(前)・建築 3:日大理工・学部・建築

基準座標モデル

3.2.3. 免震層限界変形による目標クライテリア

免震層の限界変形 D_b=0.50[m]とし,免震層の1次刺 激関数 β₁r_b=0.775 を用いて(3-5)式より,基準座標系の 目標変位に求め直すと D_{maxb}=0.64[m]となる.また,高 次モードの影響を考慮する為、(3-6)式より1次モード 負担分 b=0.765 を求め、(3-7)式より目標応答倍率 D_{max}/D₄₀=1.06を求める.

$$D_{maxb} = \frac{D_b}{\beta_1 r_b}$$
(3-5) $b = \frac{D_{401}}{D_{401} + D_{402}}$ (3-6)
$$\frac{D_{max}}{D_{40}} = \frac{D_{maxb}}{D_{401}} \cdot b$$
(3-7)

3.2.4. 応答性能設計図表による免震層性能の決定

基準座標系の性能となる Figure 3.6 に示す弾塑性要素 と粘性要素をFigure3.7応答性能設計図表より決定する. 1 次モードのモードバイリニア係数 \bar{p}_d =0.15 と設定し, 目標応答倍率 Dmax/D40 を満足する弾塑性性能をモード 塑性率 $\bar{\mu}_{i}$ =10, モード粘性減衰定数 \bar{h} =0.2, D_{max,1st}/D₄₀=0.939 を読み取る. また, D_{max,1st}=0.431[m] となる.

【粘性要素】

Figure3.6 応答性能設計図表より求まるモード性能

Figure3.7 応答性能設計図表

3.2.5.変換倍率式を用いた免震層性能の設計

次に, Figure 3.7 より求めた1次モードを対象とした 基準座標系の免震層パラメータから実モデルパラメー タを求める必要がある.そのため、次報で述べる Figure3.8 に示す「変換倍率式及び図表」を用いて免震 層性能を決定する.本図表は、3.2.1.で求めた周期比 $T_{eq,b}/T_{s,1st}$ 及び Figure 3.7 より求めたモードバイリニア係 数 $ar{p}_a$,モード塑性率 $ar{\mu}_a$ で構成され,読み取った値を基 準座標系の性能に乗ずることで直接的に下式より免震 層性能を求めることができる.

初期剛性	$K_E = \gamma_k \cdot \overline{K}_{1st}$	(3-8)
朔性家	$\mu_{I} = \gamma \cdot \overline{\mu}_{I}$	(3-9)

バイリニア係数
$$p_d = \gamma_p \cdot \bar{p}_d$$
 (3-10)

 $C = 2\overline{h}\,\omega_E \sum m \cdot \frac{1}{\beta_1 r_b^2}$ 減衰係数 (3-11)

弾性限変形
$$X_{ed} = \frac{\beta_i r_b \cdot D_{max,1st}}{\mu_s}$$
 (3-12)

Table3.2 免震層性能

3.3. まとめ

Figure 3.9 時刻歴応答解析結果より、目標クライテリ アを満足している事を確認でき,変換倍率図表の有効 性を示した. 次報では,変換倍率式の作成方法を示す.

3.4. 参考文献

[1] 中山勝仁, 秦一平, 石丸辰治他: 応答性能設計図表 を用いた免震層の逆設計法に関する基礎的研究,日 本建築学会大会学術梗概集, pp.447-452,2012.9