上部構造の目標応答性能を満足する免震設計法に関する研究 その4 モードパラメータから実モデルパラメータへの変換方法

Research on the base isolation design method satisfied the target response of the superstructure Part4 Method of converting Mode parameters into actual Model parameters

○黒田竜司², 秦一平¹, 高鹿雅樹³

*Ryuji Kuroda², Ippei Hata¹, Masaki Kouroku³

This paper describes the creation method of conversion ratio formulas. It targets at high-rise buildings which can't be replaced with a super structure as rigid-body, and is intended converting simply mode parameters into actual model parameters.

4.1. はじめに

前報で,免震層のモードパラメータから実パラメ ータの変換に「変換倍率図表」を利用した設計方法 を示した.本報では,その作成方法及び変換精度に ついて示す.

4.1.1.変換倍率式の位置づけ

上部構造周期 *T_{s,Ist}* が長い高層モデルを設計する 場合,風等の影響を受けない様に,免震層周期 *T_{eq,b}* との周期比 *T_{eq,b}*/*T_{s,Ist} が約 2.2* 倍以下とする必要があ る.その為,上部構造は剛体置換不可能となり,初 期剛性及びバイリニア係数,塑性率,粘性減衰定数 で構成される免震層性能の組合せを変え,複素固有 値解析の収斂計算より,モードパラメータから免震 層パラメータを求め直す必要がある.これに対して, この煩雑な操作を必要としない式である.

4.2. 変換倍率式の作成方法

対象範囲は、周期比 $T_{eq,b}/T_{s,Ist}=1.5\sim2.2$, Figure4.1 の弾塑性要素からモードバイリニア係数 p_{d} =0.05~0.40,モード塑性率 μ_{d} =5.0~20.0とする.

4.2.1.2質点系による複素固有値解析の収斂計算

変換倍率の算出例を示す.高層モデルを想定し, 上部構造質量 $m_s=69,972[\text{ton}]$,免震層質量 $m_b=3,210[\text{ton}]$,上部構造周期 $T_{s,Ist}=2.5[s]$ とし,周期 比 $T_{eq,b}/T_{s,Ist}=1.6$ より免震層周期 $T_{eq,b}=4.0[s]$ を決定する.応答性能設計図表より決定する1次モードのモードバイリニア係数 $\overline{p_a}=0.20$,モード塑性率 $\overline{\mu_a}$ =10.0と設定する.この2質点系の複素固有値解析 より,1次実効周期 $T'_{Ist}=4.691[s]$ となる.そして,系の1次固有値が設定した $\overline{p_a}$, $\overline{\mu_a}$ 及び実効周期 $T'_{Ist}[s]$ となるまで免震層性能の仮定を繰り返し,収斂計算を行う.(Table4.1, 4.2)

次に,決定した免震層性能と複素固有値解析結果の比から初期剛性 γ_k 及びバイリニア係数 γ_p ,塑性率 γ_u の変換倍率を(4-1)~(4-3)式より計算する.

Table4.1 収斂計算より決定した免震層性能

-						_					
	初期剛性(kN/m)		バイ	リニア係数	: 塑性率						
	1,220,000			0.069	32.20]					
Table4.2 複素固有值解析結果(1次)											
	T'		3	p_d	$\overline{\mu_{d}}$						
	4.691		23	0.2008	10.308						
$\gamma_{t} = \frac{6}{100000000000000000000000000000000000$											
美効向期による剛性 $1.339 \cdot 731819$ $\gamma_{p} = $											
$\gamma_{\mu} = \frac{\beta}{F}$	ドの必要/ 1震層塑性 ドの必要的	ヾイリ 率 月性率	チゼ <u>32.</u> 103	糸数 0.200 $\frac{20}{08} = 3.133$	18	(4-3)					

4.2.2.変換倍率式及び図表の作成

求めた各変換倍率を周期比別, 塑性率毎に散布図 を作成する.以下に変換倍率式の作成手順を示す.

① 散布図に形式を統一した近似式を作成する.

(例: $y = a \cdot \overline{p_d}^{-a} + b$)

- ①の近似式の係数を縦軸,周期比が横軸とした 散布図を新たに作成し,形式を統一した近似式 を作成する.
 (例: a = A · (T_{eq,b}/T_{s,lst})^b)
- ③ ②の近似式の係数を縦軸,塑性率を横軸とした 散布図を新たに作成し,近似式を作成する.
- ④ ②及び③で作成した係数の近似式を①の近似
 式に代入し、変換倍率式を作成する.

例として手順①の近似線を下図($T_{eq,b}/T_{s,lst}$ =1.6)に示す.

1:日大理工・教員・建築 2:日大理工・院(前)・建築 3:日大理工・学部・建築

Table4.3 変換倍率式の精度検証

	初期剛性		バイリニ	ニア係数	塑性率	
μ_d	平均	標準偏差	平均	標準偏差	平均	標準偏差
5	0.990	0.0239	1.0189	0.0383	1.0145	0.0592
7.5	1.0011	0.0194	0.9875	0.0223	0.9928	0.0523
10	0.9776	0.0293	1.0257	0.0758	0.9449	0.0413
15	0.9989	0.0207	1.0117	0.0489	1.0740	0.0834
20	1.0177	0.0236	0.9809	0.0271	1.0891	0.1181

4.2.3. 変換倍率式と収斂計算結果の標準偏差

Table4.3 より, 塑性率の $\mu_d=20$ 以外で標準偏差は0.10 以内となり, 良好な精度を確認できる. 但し, 固有 値が収斂しないパラメータの組合せも存在する為, 設計上想定される範囲で検証を行った.

4.3.まとめ

本報では、モードパラメータから実際の免震層パ ラメータに戻す操作となる複素固有値解析の収斂 計算を不要とする変換倍率式及び図表の提案を行 った.

4.4.参考文献

- (1) 秦一平,石丸辰治,他:非線形ダンパーと弾塑性 ダンパーを併用した系の応答性能設計手法,日 本建築学会構造系論文集,第617号,pp.47-54.200
- 中山勝仁,秦一平他:応答性能設計図表による免 震層逆設計法に関する基礎的研究 その1,その
 日本建築学会大会学術講演梗概 集,B-2,pp.447-450,2012.9
- 中山勝仁,豊田悠紀子,秦一平他:上部構造の目標 応答性能を満足する免震設計法に関する研究 その1,その2,学術講演梗概2014(構造 II),569572
- 4) (社)日本建築学会:免震構造設計指針,2013 年版