連結型制震フレーム耐震改修工法に関する基礎的研究 その4 中間層連結制震システムに基づいた設計例

A basic study on the seismic retrofitting system by response control frame of coupling type Part4 Design example based on coupled seismic response control system on intermediate-level

> ○石澤遥³, 秦一平1, 本藤洋介² * Haruka Ishizawa³, Ippei Hata¹, Yousuke Hondou²

This paper proposed a retrofit method to control response by using outer frame on intermediate-level of the existing building. This paper shows a design example of multiple mass system and its effectiveness by the time history response analysis

4.1. はじめに

その3では、中間層連結制震システムの設計フロー の概要を示した. その4では、多質点系の設計例を示 し,提案システムの有効性を示していく.

4.2. 本提案システムを用いた多質点系の設計例

本節では、その3のFigure3-2の設計フローに沿って高 さの違う多数の副系での設計例を示す.

既存躯体の広義質量、固有周期の算出 4.2.1.

本設計法では、副系モデルを決定するために、既存 躯体を1質点系に縮約する.まず,固有値解析をして 固有周期,固有ベクトルを求める.これを基に(4-1)式 を用いて広義質量を求める.この際,連結する副系の 高さによって固有ベクトルを1に基準化する位置を変 える.対象となる既存躯体の諸元,連結する副系ごと に基準化した固有ベクトル、その時の広義質量及び固 有周期を Table4-1, 4-2, 4-3, 4-4 に示す.

$$\hat{m} = r_1^T M r_1 \tag{4-1}$$

m:広義質量 M:質量マトリクス r₁:固有ベクトル

Table4-1 既存躯体の諸元

FI	質量	剛性	1次固有	EI	質量	剛性	1次固有
ГL	mi(ton)	(kN/m)	ベクトル	ГL	mi(ton)	(kN/m)	ベクトル
28	224.8	1100000	15.11	14	1264.7	3500000	9.95
27	195.8	995000	15.07	13	1270.2	3580000	9.29
26	1510.2	1640000	15.01	12	1270.2	3640000	8.62
25	1261.4	2260000	14.83	11	1270.2	3710000	7.93
24	1261.4	2550000	14.61	10	1270.2	3760000	7.23
23	1261.4	2740000	14.34	9	1270.2	3800000	6.51
22	1261.4	2860000	14.03	8	1270.2	3880000	5.77
21	1263.0	2950000	13.66	7	1270.2	3940000	5.03
20	1264.7	3040000	13.25	6	1270.2	4040000	4.28
19	1264.7	3130000	12.79	5	1271.9	4250000	3.54
18	1264.7	3180000	12.29	4	1273.6	4410000	2.83
17	1264.7	3280000	11.75	3	1273.6	4760000	2.13
16	1264.7	3330000	11.18	2	1273.6	6520000	1.48
15	1264.7	3400000	10.58	1	1678.7	3140000	1.00

基準化した1次固有ベクトル Table4-2

DI	基準化位置			EI	基準化位置				
FL	28層	13層	8層	3層	FL	28層	13層	8層	3層
28	1	1.63	2.62	7.09	14	0.66	1.07	1.72	4.67
27	1.00	1.62	2.61	7.07	13	0.62	1	1.61	4.36
26	0.99	1.61	2.60	7.04	12	0.57	0.93	1.49	4.05
25	0.98	1.60	2.57	6.96	11	0.53	0.85	1.37	3.72
24	0.97	1.57	2.53	6.86	10	0.48	0.78	1.25	3.39
23	0.95	1.54	2.49	6.73	9	0.43	0.70	1.13	3.05
22	0.93	1.51	2.43	6.58	8	0.38	0.62	1	2.71
21	0.90	1.47	2.37	6.41	7	0.33	0.54	0.87	2.36
20	0.88	1.43	2.30	6.22	6	0.28	0.46	0.74	2.01
19	0.85	1.38	2.22	6.00	5	0.23	0.38	0.61	1.66
18	0.81	1.32	2.13	5.77	4	0.19	0.30	0.49	1.33
17	0.78	1.26	2.04	5.52	3	0.14	0.23	0.37	1
16	0.74	1.20	1.94	5.25	2	0.10	0.16	0.26	0.69
15	0.70	1.14	1.83	4.96	1	0.07	0.11	0.17	0.47

Table4-3 主系広義質量 Table4-4

主系固有周期 固有周期(s)

1.963

0.695

0.425

0.309

基準化位置	広義質量(ton)	次数
28層	15270.7	1次
13層	40336.8	2次
8層	104667.6	3次
3層	767279.4	4次

4.2.2. 副系の広義質量、1次固有周期の決定

制震対象である主系の広義質量,1 次固有周期が算 出されたので, Figure4-1の周期比 - 目標粘性減衰定数 関係から副系に必要な広義質量,1 次固有周期を決定 する. 今回は目標粘性減衰定数を約0.10とし, 質量比 を 0.2, 周期比を 1.54 とする. 質量比, 周期比の関係 は(4-2)式の通りである.これより、副系に必要な1次 広義質量は Table4-5 に示す.

質量比 =
$$\frac{r_1^T M_2 r_1}{r_1^T M_1 r_1}$$
 周期比 = $\frac{T_2}{T_1}$ (4-2)

 M_1, M_2 : 主系, 副系の質量マトリクス T1,T2:主系,副系の1次固有周期

Table4-5 副系に必要な広義質量

副系	28層	13層	8層	3層
広義質量(ton)	3054.1	8067.4	20933.5	153455.9

1:日大理工・教員・建築 2:日大理工・院(前)・建築 3:日大理工・学部・建築

4.2.3. 副系諸元の決定

先ほど求めた副系 の諸元を多質点系へ 拡張する. その際, 前報で記した「完全 モード制御法」が成 立するように, 質点 質量, D.M.質量, 剛 性を決定していく. 今回は質点質量を全 て共通で 30ton と設 定した.決定した D.M.質量, アウトフ レームの剛性を Table4-6, 4-7 に示す. アウトフレームの剛 性は各モデル全層同 一の値である.

Tabl	Table4-6 各モデルの D.M.量					
17		D.M.質	量(ton)			
FL	28層	13層	8層	3層		
28	52900	-	-	-		
27	52915	-	-	-		
26	52940	-	-	-		
25	52975	-	-	-		
24	53020	-	-	-		
23	53075	-	-	-		
22	53140	-	-	-		
21	53215	-	-	-		
20	53300	-	-	-		
19	53395	-	-	-		
18	53500	-	-	-		
17	53615	-	-	-		
16	53740	-	-	-		
15	53875	-	-	-		
14	54020	-	-	-		
13	54175	79000	-	-		
12	54340	79015	1			
11	54515	79040	-	-		
10	54700	79075	-	-		
9	54895	79120	-	-		
8	55100	79175	132200	-		
7	55315	79240	132215	-		
6	55540	79315	132240	-		
5	55775	79400	132275	-		
4	56020	79495	132320	-		
3	56275	79600	132375	403000		
2	56540	79715	132440	403015		
1	56815	79840	132515	403040		

Table4-7 各アウトフレームの剛性

アウトフレーム	28層	13層	8層	3層
剛性(kN/m)	280000	353000	575000	1740000

4.2.4. 最適な連結部剛性 ka 粘性減衰係数 caの設定

次に「定点理論」を成立させるために最適な連結部 剛性 k_a の設定する.副系の各層に設置している粘性ダ ンパーの粘性減衰係数 c_a が 0, ∞の時の応答倍率曲線 上で交わる二つの定点の高さが同じとなる連結部剛性 k_a の値を数回の複素固有値解析より設定する.最適同 調関係にできたら二つの定点が最大となるように最適 な粘性減衰係数 c_a を与えて設計は終了となる.各連結 モデルの連結部剛性 k_a ,粘性減衰係数 c_a を Table4-8 に,最適設計できた時の最適同調関係図と最適設計図 を Figure4-2,4-3 に示す..粘性減衰係数 c_a は各モデル全 層同一の値である.

Table4-8 各モデル諸元

連結モデル	28層	13層	8層	3層		
連結部剛性kd(kN/m)	17000	53500	162000	3500000		
粘性減衰係数cd(kN·s/m)	65000	90000	155000	420000		

4.3. 提案モデルの時刻歴応答解析結果

提案モデルの制震性能を確認するために,地震波入 力(BCJ-L2 波 0.815 倍)による時刻歴応答解析を行う. 副系が 28, 13, 8, 3 層の連結モデルの応答結果を Figure4-4 に示す.応答変位,速度は非制震時より応答 が良い.また,応答加速度は副系が 13 層までは非制震 時より応答が良いが, 3 層のときは応答が非制震時以 上になっている.これより,応答変位,速度はどの層 で連結制震しても応答は良くなっていることが分かる. しかし,高次モードの影響で応答加速度は低層連結に なるほど応答が大きくなっている.そのため,応答加 速度を抑えるためには,副系が主系の中層程度である ことが良いと推測される.

4.4. まとめ

本報では、28 層の多質点系モデルに対し、それより 低層の制震部材が備わったアウトフレームで連結制震 理論に基づいた最適同調設計法が適応可能であること を示した.また、時刻歴応答解析により、応答が低減 できることが示された.これより、本研究で提案する 中間層連結制震システムの有効性を示すことが出来た.

4.5. 参考文献

[1] 高松慶介,秦一平,廣谷直也,田中友基:「連結型制震 フレーム耐震改修工法に関する基礎的研究その2」,

日本建築学会大会学術講演梗概集, pp.701-702, 2014.9 [2] 田中友基,秦一平,高松慶介,廣谷直也:「連結型制震 フレーム耐震改修工法に関する基礎的研究その3」,

日本建築学会大会学術講演梗概集, pp.703-704, 2014.9