B-7

複素固有値解析と応答性能設計図表を用いた制震構造物のパラメータ設計方法に関する研究 その3 制震設計方法の設計例

Research on the inverse design method of damper parameters in response control structure

Part3 Design example of a seismic design method

○枝村泰², 秦一平¹, 森勇哉², 服部恵多²

*Yasushi Edamura², Ippei Hata¹, Mori Yuuya², Keita Hattori²

This paper proposed a new placement method of response control device by comparing damper parameters of three models in the previous paper (part2). This paper shows the effectiveness of the proposed method with an example of 41 story building model.

3.1.はじめに

前報その2では,制震装置を主構造剛性比例倍に配置したモデルと全層同一に配置したモデルを組み合わせることで新たな配置方法を提案した.本報では提案した配置方法が他のモデルに対しても適用できるかを確かめるため.41層モデルを例に検討を進めていく.

3.2.検討モデルの概要

検討モデルの諸元を Table3.1 に示す.また内部粘性減 衰を剛性比例型で1%としている.

	41層					
FL	質量	減衰係数	初期剛性	弹性限変形	バイリニア係数	
41	(ton)	(kN•s/m)	(kN/m)	(m)	pd	
41	2,442	41,614	4,700,000	0.001	0.035	
40	1,680	30,458	3,440,000	0.002	0.053	
39	1,667	32,495	3,670,000	0.003	0.055	
38	1,670	33,911	3,830,000	0.003	0.056	
37	1,670	34,885	3,940,000	0.004	0.056	
36	1,670	36,125	4,080,000	0.004	0.056	
35	1,670	37,364	4,220,000	0.004	0.057	
34	1,670	38,073	4,300,000	0.004	0.057	
33	1,670	38,604	4,360,000	0.005	0.058	
32	1,670	39,224	4,430,000	0.005	0.060	
31	1,670	39,666	4,480,000	0.005	0.060	
30	1,670	40,375	4,560,000	0.005	0.059	
29	1,668	42,146	4,760,000	0.005	0.059	
28	1,670	44,713	5,050,000	0.005	0.057	
27	1,670	45,333	5,120,000	0.005	0.057	
26	1,670	45,333	5,120,000	0.006	0.057	
25	1,670	44,625	5,040,000	0.006	0.056	
24	1,686	44,005	4,970,000	0.006	0.057	
23	1,686	44,271	5,000,000	0.006	0.057	
22	1,686	44,979	5,080,000	0.006	0.057	
21	1,698	46,927	5,300,000	0.006	0.057	
20	1,688	49,583	5,600,000	0.006	0.056	
19	1,688	50,468	5,700,000	0.006	0.056	
18	1,688	50,911	5,750,000	0.006	0.056	
17	1,688	51,265	5,790,000	0.006	0.056	
16	1,688	51,619	5,830,000	0.006	0.056	
15	1,688	51,885	5,860,000	0.006	0.056	
14	1,688	52,239	5,900,000	0.006	0.056	
13	1,688	52,859	5,970,000	0.006	0.056	
12	1,688	53,744	6,070,000	0.006	0.057	
11	1,688	54,276	6,130,000	0.006	0.057	
10	1,688	54,807	6,190,000	0.006	0.057	
9	1,688	55,869	6,310,000	0.006	0.057	
8	1,688	57,198	6,460,000	0.006	0.057	
7	1,688	58,526	6,610,000	0.006	0.057	
6	1,685	59,411	6,710,000	0.006	0.058	
5	1,688	61,005	6,890,000	0.006	0.059	
4	1,688	64,192	7,250,000	0.006	0.061	
3	1,688	75,083	8,480,000	0.005	0.064	
2	1,874	67,557	7,630,000	0.005	0.073	
1	1,794	92,083	10,400,000	0.004	0.073	

Table3.1.検討モデル諸元

3.3.設計用入力地震動

本例では2つの地震動レベルで検討するため 「Elcentro-NS」「Hachinohe-NS」「TAFT-EW」 「JMA-KOBE-NS」「BCJ-L2」をそれぞれ50kineと75kine に基準化した地震動を用いる.各地震波の粘性減衰定 数 10%の応答スペクトルを計算し,それぞれの応答ス ペクトルから各周期の最大値をまとめたピークスペク トルを作成し,これを設計用入力地震動とする.

3.4. 目標クライテリア

検討モデルの目標となる塑性率を設定する.Table3.1 に示す検討モデルに対し上記に示した設計用入力地震 度を用いて時刻歴応答解析を行い,非制震時の各層に おける塑性率を把握する.50kineの場合は非制震時にお いて,最大塑性率を持つ層の塑性率が 2.0 となる倍率を 各層に乗じた結果を目標塑性率とする.同様に,75kine の場合は最大塑性率を持つ層の塑性率が 4.0 となる倍 率を乗じた結果を目標塑性率とし,全層における非制 震時の塑性率と目標塑性率の比較を Fugure3.1 に示す.

Figure3.1.目標塑性率(左:50kine 右:75kine)

1:日本大学理工学部 准教授・博士(工学)

2:日本大学理工学部

Associate Professor, College of Science and Technology, Nihon University, Dr.Eng College of Science and Technology, Nihon University

3.5.制震装置の配置

目標粘性減衰定数 h_{GD}は 50kine,75kine に基準化したそ れぞれの入力地震動に対して算出する.ここでは紙面 の都合上,応答性能設計図表より推定する h_{GD}の算出過 程は割愛する.なお,目標粘性減衰定数は h_{GD}=0.3 と決定 する.1 次モードの粘性減衰定数が決定した目標粘性減 衰定数となるように「制震装置を主構造剛性比例倍に 配置する方法」と「制震装置を全層同一に配置する方 法」により制震パラメータを決定し,前報と同様にこの 2 つの配置方法を組み合わせたものを提案配置とす る.Table3.2 に決定した制震パラメータを示す.

Table3.2.制震パラメータ

	r			-				
	41層							
	50kine,75kine							
FL	剛性比例配置		全層同	同一配置	提案配置			
	減衰係数	取付部剛性	減衰係数	取付部剛性	減衰係数	取付部剛性		
	(kN•s/m)	(kN/m)	(kN•s/m)	(kN/m)	(kN•s/m)	(kN/m)		
41	1,727,250	8,225,000	2,142,000	10,200,000	1,727,250	8,225,000		
40	1,264,200	6,020,000	2,142,000	10,200,000	1,264,200	6,020,000		
39	1,348,725	6,422,500	2,142,000	10,200,000	1,348,725	6,422,500		
38	1,407,525	6,702,500	2,142,000	10,200,000	1,407,525	6,702,500		
37	1,447,950	6,895,000	2,142,000	10,200,000	1,447,950	6,895,000		
36	1,499,400	7,140,000	2,142,000	10,200,000	1,499,400	7,140,000		
35	1,550,850	7,385,000	2,142,000	10,200,000	1,550,850	7,385,000		
34	1,580,250	7,525,000	2,142,000	10,200,000	1,580,250	7,525,000		
33	1,602,300	7,630,000	2,142,000	10,200,000	1,602,300	7,630,000		
32	1,628,025	7,752,500	2,142,000	10,200,000	1,628,025	7,752,500		
31	1,646,400	7,840,000	2,142,000	10,200,000	1,646,400	7,840,000		
30	1,675,800	7,980,000	2,142,000	10,200,000	1,675,800	7,980,000		
29	1,749,300	8,330,000	2,142,000	10,200,000	1,749,300	8,330,000		
28	1,855,875	8,837,500	2,142,000	10,200,000	1,855,875	8,837,500		
27	1,881,600	8,960,000	2,142,000	10,200,000	1,881,600	8,960,000		
26	1,881,600	8,960,000	2,142,000	10,200,000	1,881,600	8,960,000		
25	1,852,200	8,820,000	2,142,000	10,200,000	1,852,200	8,820,000		
24	1,826,475	8,697,500	2,142,000	10,200,000	1,826,475	8,697,500		
23	1,837,500	8,750,000	2,142,000	10,200,000	1,837,500	8,750,000		
22	1,866,900	8,890,000	2,142,000	10,200,000	1,866,900	8,890,000		
21	1,947,750	9,275,000	2,142,000	10,200,000	1,947,750	9,275,000		
20	2,058,000	9,800,000	2,142,000	10,200,000	2,058,000	9,800,000		
19	2,094,750	9,975,000	2,142,000	10,200,000	2,094,750	9,975,000		
18	2,113,125	10,062,500	2,142,000	10,200,000	2,113,125	10,062,500		
1/	2,127,825	10,132,500	2,142,000	10,200,000	2,127,825	10,132,500		
10	2,142,323	10,202,300	2,142,000	10,200,000	2,142,000	10,200,000		
10	2,155,550	10,235,000	2,142,000	10,200,000	2,142,000	10,200,000		
13	2,100,250	10,323,000	2,142,000	10,200,000	2,142,000	10,200,000		
12	2,230,725	10,622,500	2,142,000	10,200,000	2,142,000	10,200,000		
11	2,252,775	10,727,500	2,142,000	10,200,000	2,142,000	10,200,000		
10	2,274,825	10,832,500	2,142,000	10,200,000	2,142,000	10,200,000		
9	2,318,925	11,042,500	2,142,000	10,200,000	2,142,000	10,200,000		
8	2,374,050	11,305,000	2,142,000	10,200,000	2,142,000	10,200,000		
7	2,429,175	11,567,500	2,142,000	10,200,000	2,142,000	10,200,000		
6	2,465,925	11,742,500	2,142,000	10,200,000	2,142,000	10,200,000		
5	2,532,075	12,057,500	2,142,000	10,200,000	2,142,000	10,200,000		
4	2,664,375	12,687,500	2,142,000	10,200,000	2,142,000	10,200,000		
3	3,116,400	14,840,000	2,142,000	10,200,000	2,142,000	10,200,000		
2	2,804,025	13,352,500	2,142,000	10,200,000	2,142,000	10,200,000		

Table3.3. 複素固有值解析結果

	50kine,75kine			
モデル	T _{eq}	h _{eq}		
剛性比例配置	2.055	0.323		
全層同一配置	2.162	0.317		
提案配置	2.206	0.307		

Table3.3 に示す複素固有値解析結果より各配置方法に より決定した制震パラメータが目標となる粘性減衰定 数 h_{GD}=0.3 を満たしていることが確認できる.

3.6.検討モデルの時刻歴応答解析結果

検討モデルに対し提案配置方法により決定した制震 パラメータを入力し,上記で示した設計用入力地震動 5波を用いて時刻歴応答解析を行った結果を Figure 3.2 に示す.

Figure 3.2. 時刻歷応答解析結果 (左: 50kine 右: 75kine)

Figure 3.2 より,検討モデルが設計用入力地震動 50kine,75kine ともに目標クライテリアを満たしている ことが確認できる.この結果から構造躯体の塑性化を 考慮した制震設計法及び前報で提案した制震装置の配 置方法が 41 層モデルに対しても適用できたことが確 認できる.

3.7.まとめ

本研究では既往の制震設計方法を構造躯体の塑性化 を考慮した場合に拡張した.さらに,その2では,塑性化 を考慮した場合,既往の設計手順では十分に対応でき なかった制震装置の配置に関して,3つの配置モデル を比較検討することでより少ない制震パラメータで各 振動モードの影響に対応できる新たな配置方法を提案 した.本報その3では 41 層モデルを対象に具体的な設 計例を示し,異なる入力レベルと様々な地震波に対し て設定した目標クライテリアを満足したことから時刻 歴応答解析に依存しない提案制震設計方法の有効性を 示すことができた

参考文献

[1]石丸 辰治,秦一平,三上 淳治 [他]:付加剛比による D.M.同調システムの簡易設計法 日本建築学会
構造系論文集 75(654), 1455-1464, 2010-08

[2]安松 哲生,秦一平,石丸 辰治,金井 修司,山本 哲也:複素固有値解析と応答性能設計図表を用いた制震構造物のパラメータ設計方法に関する研究その1 ~その3 学術講演梗概集 2013(構造 II),961-966,2013-08-30