H1-11

NURBS による3次元物体形状作成と運動解析

Creation of 3D object shape by NURBS and the motion analysis

○齋藤 良平¹,野村 卓史²,長谷部 寬²
 Ryohei Saito¹, Takashi Nomura², Hiroshi Hasebe²

Abstract: 3D objects are represented by NURBS function that is used in CAD. The volume, the center of gravity, moment of inertia of the object are calculated using the Gauss divergence theorem. Error of the calculated values are reasonable. The motion analysis of a twisted prism is carried out by the Newmark β method.

1. はじめに

風災害や火山災害では瓦,木片などの飛翔物による 被害がある.これらの物体形状は複雑で不規則である. これらの物体の挙動を解析するためには多様な物体形 状の解析モデルが必要である.有限要素法は解析対象 の形状作成の任意性においてきわめて優れた手法であ るが,メッシュ生成に多くの労力がかかること,また CAD で作成された曲面形状を厳密に表現しきれないこ とが弱点として挙げられる.そこで CAD で用いられる NURBS (Non-Uniform Rational B-spline)を有限要素の基底 関数に用いたIGA (Isogeometric Analysis)という解析手法 が提案されている¹⁾.

本研究では CAD ソフトから物体の形状データを抽出 し, NURBS を用いて物体形状を作成し,運動解析に必要 な諸量を算出 ^{2,3,4},物体の運動解析を目的とする.

2. NURBS による曲面の表現

曲面の表現に用いる NURBS 基底関数は次式(1)の ように,2つのパラメータξ,ηの関数として定義される.

$$R_{i,j}^{p,q}(\xi,\eta) = \frac{N_{i,p}(\xi)M_{j,q}(\eta)w_{ij}}{\sum_{k=1}^{n}\sum_{l=1}^{m}N_{k,p}(\xi)M_{l,q}(\eta)w_{kl}}$$
(1)

ここで w_{ij} は重み, $N_{i,p}$, $M_{j,q}$ は B-spline 基底関数, p,qは基底関数の次数, n, mは基底関数の数, iはノットベク トル $\Xi = \{\xi_1, \cdot, \xi_i, \cdot, \xi_{n+p+1}\}$ の成分の番号, jはノット ベクトル $\mathcal{H} = \{\eta_1, \cdot, \eta_j, \cdot, \eta_{m+q+1}\}$ の成分番号である.

B-spline 基底関数 $N_{i,p}$ は以下のように逐次的過程により定義される.B-spline 基底関数 $N_{i,p}$ は以下のように逐次的過程により定義される.

次数p=0のとき

$$N_{i,p}(\xi) = \begin{cases} 1, & if \ \xi_i \le \xi < \xi_{i+1} \\ 0, & otherwise \end{cases}$$
(2)

次数p>0のとき

 $\mathbf{S}(\xi,\eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} R_{i,j}^{p,q}(\xi,\eta) \mathbf{B}_{ij}$ (4) $\mathbf{S} = \langle x(\xi,\eta), y(\xi,\eta), z(\xi,\eta) \rangle^{\mathrm{T}} \text{th NURBS 曲面}, \mathbf{B}_{ij} = \langle x_{ij}, y_{ij} z_{ij} \rangle^{\mathrm{T}} \text{th arr branched transformula}$ (4) 値は CAD ソフト Rhinoceros から抽出した.

3. 体積,重心,慣性モーメントの算出

運動解析に必要な体積V,重心(x_G, y_G, z_G),慣性モー
 メントI_{xx}, I_{yy}, I_{zz}, I_{xy}, I_{xz}, I_{yz}をガウスの発散定理[式
 (5)]により算出する.

$$\iiint_{\Omega} \nabla \cdot F \, d\Omega = \iint_{\Gamma} F \cdot \boldsymbol{n} \, d\Gamma \tag{5}$$

 Aサーフェスに分割
 ③

 Aサーフェスに分割
 ④

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 A
 A

 B
 A

 B
 A

 B
 A

 B
 A

 B
 A

 B
 A

 B
 A

 B
 B

 B
 A

 B
 B

1:日本大学・院(前)・土木 2:日大理工・教員・土木

 $n = \langle n_x, n_y, n_z \rangle^T$ は表面 Γ 上の外向き単位法線ベクトル である.体積Vの場合,被積分関数を以下のように与える.

$$F_{x} = \frac{1}{3}x, F_{y} = \frac{1}{3}y, F_{z} = \frac{1}{3}z \left(\frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} + \frac{\partial F_{z}}{\partial z} = 1\right)$$
(6)
その結果体積Vけ次の表面積分で表される

 $V = \int_{\eta_0}^{\eta_L} \int_{\xi_0}^{\xi_L} \left\{ \frac{1}{3} x(\xi,\eta) n_x + \frac{1}{3} y(\xi,\eta) n_y + \frac{1}{3} z(\xi,\eta) n_z \right\} d\xi d\eta$ (7) ここで方向余弦 n_x, n_y, n_z は次式で表される.

$$n_{x} = \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial z}{\partial \xi} \frac{\partial y}{\partial \eta} \quad n_{y} = \frac{\partial z}{\partial \xi} \frac{\partial x}{\partial \eta} - \frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} \quad (8)$$
$$n_{z} = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta}$$

重心を求めるために1次モーメントを算出する. zx面からの距離yを積分する1次モーメント G_{zx} は次のように表される.

$$G_{zx} = \iiint_{\Omega} y \, dx dy dz \tag{9}$$

被積分関数は次のように与えた.

$$F_y = \frac{1}{2} y^2 \left(\frac{\partial F_y}{\partial y} = y \right)$$
(10)

その結果1次モーメントは次の表面積分で表される.

$$G_{zx} = \int_{\eta_0}^{\eta_L} \int_{\xi_0}^{\xi_L} \left\{ \frac{1}{2} y^2(\xi, \eta) n_y \right\} d\xi d\eta$$
(11)

z軸まわりの慣性モーメント I_{zz} は次のように表される.

$$I_{zz} = \iiint_{\Omega} (x^2 + y^2) dx dy dz$$
(12)

被積分関数を次のように与えた.

$$F_{x} = \frac{1}{3}x^{3}, F_{y} = \frac{1}{3}y^{3} \left(\frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} = x^{2} + y^{2}\right)$$
(13)

その結果慣性モーメント I_{zz} は次の表面積分で表される. $I_{zz} = \int_{\eta_0}^{\eta_L} \int_{\xi_0}^{\xi_L} \left\{ \frac{1}{3} x^3(\xi, \eta) n_x + \frac{1}{3} y^3(\xi, \eta) n_y \right\} d\xi d\eta$ (14) 式(7),(11),(14)には,NURBS 曲面の導関数 $\partial s / \partial \xi$, $\partial s / \partial \eta$ が必要である.図1に角柱を30度ねじった物体を示す. 台形側を適用し,数値積分した結果を表1に示す.表面 積分は図1(a)の6つの面ごとに行い,各サーフェス ごとの計算結果の合計を求めた.

4. 運動解析

Newmark β 法を用いて, 角柱を z 軸周りに 3 0 度ねじ った剛体の運動解析を行った.

表1	体積,	重心,	慣性モーメン	トの計算結果

	計算値	理論値	誤差(%)
V	6072.4	6000	1.2
$x_G(G_{yz}/V)$	9.92	10	-0.84
$y_G(G_{zz}/V)$	4.96	5	-0.84
$z_G(G_{xy}/V)$	15.09	15	0.61
I _{xx}	521958	521058	1.49
I _{yy}	631936	635652	-0.58
Izz	252923	249942	1.19

並進運動は以下のように表される.

$$ma_x = f_x, ma_y = f_y, ma_z = f_z$$
 (15)
ここでmは剛体の質量, aは剛体の加速度のベクトル, f

は剛体の重心に作用する力のベクトルである.

回転運動は以下のように表される.

$$I_{\xi}\dot{\omega}_{\xi} = T_{\xi} + (I_{\eta} - I_{\zeta})\omega_{\eta}\omega_{\zeta} \tag{16}$$

$$I_{\eta}\dot{\omega}_{\eta} = T_{\eta} + (I_{\zeta} - I_{\xi})\omega_{\zeta}\omega_{\xi}$$
(17)

 $I_{\zeta}\dot{\omega}_{\zeta} = T_{\zeta} + (I_{\xi} - I_{\eta})\omega_{\xi}\omega_{\eta}$ (18)

ここで I_{ξ} , I_{η} , I_{ζ} は主軸まわりの慣性モーメント, $\dot{\omega}_{\xi}$, $\dot{\omega}_{\eta}$, $\dot{\omega}_{\zeta}$ は主軸まわりの角加速度, T_{ξ} , T_{η} , T_{ζ} は主軸まわりのトルクである. 図2は運動解析のモデルを図示したものである.

5.まとめ

NURBS を用いて作成した物体形状に対し,ガウスの 発散定理を用いて3次元物体の体積,重心,慣性モー メントを算出した.物体形状の例として30度ねじっ た角柱を作成した.体積,重心,慣性モーメントの計算 は誤差が大きいため今後改善する必要がある.3次元物 体の運動解析を行い妥当な結果を得た.

6. 参考文献

- 1) J. A. Cottrell, T. J.R. Hughes, Y. Bazilevs : Isogeometric Analysis Toward Integration of CAD and FEA, WILEY, 2009.
- 齋藤良平,野村卓史,長谷部寛: NURBS による物体形状作成と運 動解析,平成 27 年度土木学会全国大会第 70 回年次学術講演 会,CS8-008,2015.
- 3) 齋藤良平,野村卓史,長谷部寛:NURBSによる物体形状作成の試み,平成27年度土木学会第43回関東支部技術研究発表会,I-55,2016.
- 斎藤良平,野村卓史,長谷部寛: NURBS による 3 次元物体形状作 成の試み,平成 28 年度土木学会全国大会第 71 回年次学術講演 会,CS8-007,2016