H5-16 種々の衛星観測リモートセンシングと現地調査による都心域の土地被覆と熱環境の分析 Analysis of thermal environment in center region in Tokyo

by various satellite observation remote sensings and field survey.

〇村本 third 1・羽柴 秀樹²

Jun Muramoto and Hideki Hashiba

Abstract : The average temperature rose 3° C in 100 years in Tokyo. In this study, the Worldview-3 image and the image of the ground temperature distribution by the LANDSAT8/TIRS were overlapped by using some visual techniques. And the relation of the ground temperature that had been obtained from the field surveying and the satellite observation was evaluated. As a result, the relation between the detailed distribution of land cover and the ground temperature of a center region in Tokyo was considered.

1. はじめに

東京都内のヒートアイランド現象は東京環境白書 2015 にも記される環境問題の一つである.そこには, 真夏日・熱帯夜の日数増加や冬日の減少などのデータが 得られており,過去 100 年の間に平均気温が 3℃上昇し たと記されている.これらの問題に対して都市内の温度 評価に関する研究は多くあるが,高分解能衛星リモート センシングを有効利用した都市内の熱環境評価に関する 研究はほとんど行われていない.

本検討では、東京都市内のヒートアイランド現象と詳細な都市の土地被覆特性の関連性に着目し、LANDSAT 衛星による地表面温度分布画像と高分解能衛星画像を、 様々な方法で重ね合わせて分析した.そして、高分解能 衛星画像による詳細な都市空間の判読特性を活かした観 点から、東京都内の土地被覆と地表面温度分布の分析し、 これらの関連性について考察を試みた.また、気温と地 表面温度の現地調査を行う事で、LANDSAT-8/TIRS 画像 による地表面温度分布の特徴と実際の地表面温度の対応 性について検証した.

2. 方法

 Worldview-3

 分解能
 1.2m×1.2m (マルチスペクトル)

 0.3m×0.3m (パンクロマティック)

 観測日
 2014年9月22日

 LANDSAT8/TIRS (Thermal Infrared Sensor)

 分解能
 100m×100m

2014年8月19日

Table.1.The resolution at each satellite.

Fig.1.Test site.

(1) 対象エリア

ここでの調査分析エリアは Fig.1 に示す.東京都心域 を含む 5.9km×4.4km である.この対象エリア内において 高分解能衛星画像による土地被覆を調査した.また, LANDSAT8 衛星画像を利用し地表面温度分布を調査し た.これらを重ね合わせることでその関連性を分析した.

観測日

(2) 使用した観測データと前処理

使用した衛星画像とその分解能, 観測日を Table.1 に示す. Worldview-3 衛星画像において, 画像判読による

1:日大理工・院(前)・土木 2:日大理工・教員・土木

調査の精度を向上させるため、マルチスペクトル画像から、分解能 0.3m×0.3mのパンシャープン画像を作成した. ここでのパンシャープン化の方法は、Zhang, Y によって提案されている手法¹⁾を用いた.

LANDSAT8/TIRS のデータは USGS/Earthexplole²⁾ から 入手した Level-IT GeoTIFF データである. このデータに 対して ATCOR アルゴリズムによる地表面温度への変換 処理を施した³. 気象庁観測によるこの日の東京都内の 日最高気温は 34.7℃,日最低気温は 26.5℃であった⁴.

得られた地表面温度画像について、LANDSAT8/TIRS 画像に付加されている位置座標情報を基準に、Nearest Neighbor 法によって地表面温度画像を Worldview-3 衛星 のマルチスペクトル画像の分解能に合わせた 1.2m×1.2 m分解能に再配列を行った.

(3) 高分解能衛星画像と地表面温度分布画像の

オーバーレイ画像表示での画像判読による調査

パンシャープン化された Worldview-3 衛星画像と 1.2m ×1.2mに再配列された地表面温度分布画像を,それぞ れの画像データに付加されている位置座標情報を基準に オーバーレイ表示させ,詳細な地表面の土地被覆状況と 地表面温度分布の関係について,画像判読から調査を行 い,特徴の考察や実際の地表面温度分布との比較をした.

(4) 土地被覆分類手法

Worldview-3 衛星のマルチスペクトル画像上で教師な し分類(最尤分類法)を施し,5つの土地被覆種別に大 別分類した.分類結果はFig.3に示す.

(5) 気温・地表面温度の調査方法

実際の気温や地表面温度分布を確認するために,天候 が快晴であった 2016 年 9 月 1 日に現地調査を行った. 気温の計測には簡易型の気温計,地表面温度の計測には 赤外線放射温度計を用いた.また,調査を行った地表面 の位置座標を簡易型 GPS を用いて記録した.調査エリ アは東京駅丸の内口側,皇居周辺である.地表面は土地 被覆分類によって分類された5つに加え,砂利面や車線 上などを選定した.また,影域内でも土地被覆分類の結 果を基に,同様に地表面を5つほどを選定し調査した.

調査結果から得られた気温や地表面温度をまとめ、全

体の地表面温度の平均値を算出し, LANDSAT8/TIRS に よる地表面温度分布画像との比較考察を行った. 地表面 温度の平均値の精度向上のため, 5 つほどに分けられた 影域内の地表面温度の平均値をもとめた. そして算出さ れた値をまとめて影域の地表面温度として計算を行った.

3. 分析結果

Fig.2.Overlay images in each area of Worldview-3 and LANDSAT8/TIRS

Table 2 Res

Fig.3.Result of Maximum

Likelihood Crassfication.

ilt of the	fiald cum	no vev	2016	5/0/1

地表面	アスファルト	砂利面	人工構造物	植生域	車線	影域(アスファルト)
地表面温度(℃)	50.1	47.4	37.6	36.3	35.0	30.4
北緯(°'")	35-40-49.10	35-40-46.44	35-40-46.18	35-40-46.77	35-40-43.18	35-40-51.07
東経(* ' ")	139-45-51.24	139-45-24.83	139-45-35.50	139-45-33.95	139-45-34.93	139-45-42.97
気温(℃)	32.3	35.0	33.6	33.5	35.0	30.2
地表面	影域(車線)	水域	影域(水域)	影域(人工構造物)	影域(植生)	
地表面温度(℃)	28.1	26.5	25.8	24.1	23.3	2016/9/1(木)
北緯(* ' ")	35-40-47.15	35-40-42.29	35-40-44.32	35-40-44.75	35-40-46.09	天候 快晴
東経(* ' ")	139-45-41.44	139-45-36.34	139-45-39.32	139-45-41.00	139-45-34.04	調査時間 9:45~11:00
気温(℃)	30.8	35.6	30.7	30.8	32.9	

(1) 判読調査による3つエリアの温度分布の比較と考察

Worldview-3 衛星のパンシャープン画像と再配列後の 地表面温度分布をオーバーレイ表示し,画像判読による 調査を行った結果と地表面温度の凡例をFig.2 に示す.

Fig.2 より,植生が密集している領域,水域周辺,高 層ビルが密集している領域で,地表面温度が低い値を示 している事が分かる.この事から,植生や水域は地表面 温度の低下に効果的であると確認する事ができる.高層 ビルが密集する領域では,高層ビルの影が温度の低下に 影響していると考えられる.

低層住宅が密集する領域や影が差さない砂利面・アス ファルト面では、地表面温度が高い値を示している.また、面積の広い屋根を持つ人工領域構造物は、熱を蓄え 地表面温度が高い値を示すのではないかと考察された.

(2) 現地調査による地表面温度分布の考察

Table.2 は、気温と地表面温度の現地調査を行った結果 を地表面温度が高い順に並べたものである. 影域内での 平均地表面温度は 26.5℃,全体の平均地表面温度は 38.8℃,平均気温は 32.8℃である事が調査された.また, 気象庁による 2016 年 9 月 1 日の 10 時の平均気温は 29.5℃であった.

この事から、現地調査による平均気温の値を比較する と、多少誤差が生じているが、Table.2の現地調査によっ て得られた気温や地表面温度の結果は、比較的に良好なものであると判断し、LANDSAT8/TIRS との比較考察を行った.

(3) LANDSAT8/TIRS による地表面温度分布画像と 現地調査による地表面温度の比較考察

Table.3. The difference of temperature between the land cover.

(°C)	アスファルト -植生域	アスファルト 一砂利面	砂利面 一植生域	水域 一影域	植生域 -水域	植生域 一影域
LANDSAT8/TIRS	12.0	2.0	-2.0	0	9.8	9.8
現地調査	13.8	2.7	-2.7	-2.0	0	2.0
		(a)			(b)	8

Table.3 は、現地調査とLANDSAT8/TIRS による地表面 温度分布における土地被覆間の温度差を示したものであ る.現地調査における日照部分のアスファルトの地表面 温度は、東京駅丸の内口付近で計測されたものである.

この結果から、Table.3 内(a)で示されるアスファルト, 砂利面,植生域の内陸3つの土地被覆について,温度差 として良好な関係が得られていると考察された.また, 水域,影域の間でも良好な関係が認められた.しかし, Table.3 内(b)の結果から,水域,影域と他の土地被覆では 誤差が大きい傾向が示さる.現地調査を行った日時と衛 星の観測日時が異なる事から,これらの土地被覆での地 表面温度の微妙な変化への影響が大きい事が考察された.

4. まとめ

ここでは、Worldview-3 衛星画像と LANDSAT8/TIRS 画 像の重ね合わせる事で、地表面温度が高い値や低い値を 示す領域の特徴などについて考察する事ができた.また、 気温と地表面温度の現地調査からは、LANDSAT8/TIRS における土地被覆間の地表面温度差について考察する事 ができた.

今後は、衛星観測時期と現地調査時期をより同期させ た評価を行うと共に、東京都内の街並みや土地被覆と地 表面温度の関係をより定量的な観点から分析する予定で ある.

ACKNOWLEDGEMENTS :Worldview-3 image used in this study include copyrighted material of Digital Globe, Inc., All Rights Reserved. LANDSAT8/TIRS data courtesy of the U.S. Geological Survey.

参考文献

 Y. Zhang, Problems in the fusion of commercial high-resolution satellite as well as Landsat 7 images and initial solutions. In ISPRS, Vol. 34, Part 4, Geo Spatial Theory, Processing and Applications, Ottawa, Canada, 2002.

2) USGS/Earth explorer, http://earthexplorer.usgs.gov/ (accessed 2016.4.1) .

3) Richter, R. (2010) Atmospheric / Topographic Correction for Satellite Imagery - ATCOR2/3 User Guide). DLR - German Aerospace Center, 1-165. 4) 気象庁:過去の気象データ検索, http://www.data.jma.go.jp/obd/stats/etm/view/daily_s1.php?prep_no=44&block_no=47662&year=2014&m onth=8&day=19&view=> (accessed -2016.4.1)

5) 村本準,羽柴秀樹: Worldview-3 衛星画像のピクセルベース 画像分類処理による都市土地被覆の分離特性について. 土木学 会第71回年次学術講演会, 2016.

6) 東京環境白書 2015. 平成 27 年度,登録第 41 号,環境資料第 27015 号.