L-14

微小金円柱列における局在表面プラズモンの電磁界解析 —電子の振動方向と励起波長—

Electromagnetic Field Analysis of Localized Surface Plasmons in a Gold Nano-Cylinder Chain —Vibration Direction of Electron and Excitation Wavelength—

> ○高橋 涼¹, 大貫進一郎² *Ryo Takahashi¹, Shinichiro Ohnuki²

Abstract: Recently, the study of plasmonic device comprised of metal nano-particle chains has been attracted attention. The diffraction limit can be exceeded by using Localized Surface Plasmon (LSP) via the metallic nano-particle chains. In this report, we investigate the wavelength responses of the gold nano-cylinder chain due to the polarization direction of excitation wavelength.

1. はじめに

近年,微小金属を配列し局在表面プラズモン(LSP: Localized Surface Plasmon)を利用するプラズモニック 導波路や光を局所化するナノアンテナの研究が注目さ れている^[1-3].微小金属を介して LSP を伝搬させること で,回折限界を超えて光を制御することができる.ま た,デバイス設計において LSP を励振するために電子 の振動方向を適切に選択しなければならない.本報告 では,微小金円柱を等間隔で直線配列したモデルに対 して電磁界解析を行い,電子の振動方向と LSP の励起 波長の関係を明らかにする.

Figure 1 Geometry and coordinate systems

2. 解析手法

本報告では、微小金円柱列を伝搬する LSP の電磁界 解析を時間領域有限差分(FDTD: Finite Difference Time Domain)法を用いて行う^[4-5].次式に示すマクスウェル 方程式を空間的、時間的に中心差分を用いて離散化す ることで時間領域の電磁界解析を行う手法である.

$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$
(1)

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \tag{2}$$

金属の周波数分散性を考慮するために、次式に示す電 子の運動方程式を補助方程式として用いる^[6].

$$m_e \frac{\partial}{\partial t} \mathbf{v} = e \mathbf{E} - \gamma \mathbf{v} \tag{3}$$

ここで me, v, y はそれぞれ電子の有効質量, 変位ベクト

ル, 衝突係数を示す.

金属の分散性は Drude モデルを仮定し,数値解析には 次式で示す誘電率を用いる.

$$\varepsilon(\omega) = \varepsilon_{\infty} + \varepsilon_D(\omega) \tag{4}$$

$$\varepsilon_D(\omega) = -\frac{\omega_D^2}{\omega(\omega + i\gamma)} \tag{5}$$

ただし、 ϵ_{∞} は周波数無限大での誘電率、 ω_D はプラズマ 周波数である.

ここで金属内の分極電流は次に示す差分式から求める. $\mathbf{J}_{D}(x)^{n+1} = \alpha_{D} \mathbf{J}_{D}(x)^{n} + \xi_{D} \mathbf{J}_{D}(x)^{n-1}$

$$+\eta_D \frac{\mathbf{E}(x)^{n+1} - \mathbf{E}(x)^{n-1}}{2\Lambda t}$$
(6)

$$\mathbf{J}_{T}(x)^{n,n-1} = \frac{1}{2} \left\{ (\alpha_{D} + 1) \mathbf{J}_{D}(x)^{n} + \xi_{D} \mathbf{J}_{D}(x)^{n-1} \right\}$$
(7)

$$\alpha_D = \frac{4}{2 + v\Delta t} \tag{8}$$

$$\xi_D = \frac{2 - \gamma \Delta t}{2 + \gamma \Delta t} \tag{9}$$

$$\gamma_D = \frac{2\varepsilon_0 \omega_D^2 \Delta t^2}{2 + \gamma \Delta t} \tag{10}$$

これらを用いて LSP が伝搬する微小金円柱列の電磁 界解析を行い,金属内部に誘起されるダイポールモー メントを求める.

3. 解析結果

Fig. 2 は微小金円柱を直線状に配列した解析モデル である.金円柱の直径は 10 nm とし、円柱 C1 から C10 まで計 10 個を等間隔で x 軸方向に配列する.ここで円 柱列は C1 横に配置したダイポール波源により励振す る.y 軸方向に対して強く電子が振動した横モードと、 x 軸方向に対して強く振動した縦モードについて解析 を行う. Fig. 2(a)は横モード, Fig. 2(b)は縦モードでの励振と伝搬のイメージを示しており,ダイポール波源の電子の振動方向を変えることで二つのモードを制御する.また,共振波長が約550 nm の金円柱に対して,500 nm,550 nm,600 nm の波長を励起した.

横モードで LSP が伝搬した場合の円柱 C6 内部に誘 起されるダイポールモーメントを Fig. 3(a)に示す. 波 長 500 nm で励起した場合, 波長 550 nm と 600 nm に比 べてダイポールモーメントが大きくなることがわかる.

Fig. 3(b)の縦モードの場合, ダイポールモーメント が大きくなる励起波長は 600 nm となることを確認し た.

4. まとめ

本報告では微小金円柱列について電磁界解析を行い, 電子の振動方向と励起波長の関係を検討しました.横 モードの場合,励起波長 500 nm で円柱 C6 内部のダイ ポールモーメントが最大となり,縦モードの場合,600 nm で円柱 C6 内部のダイポールモーメントが最大とな ることを確認した.

5. 謝辞

本研究の一部は、私立大学戦略的研究基盤形成支援 事業の援助を受けて行われた.

- 6. 参考文献
- W. Nomura, M. Ohtsu, and T. Yatsui: "Nanodot coupler with a urface plasmon polariton condenser for optical ar/near-field nversion", Appl. Phys. Lett., Vol.86, pp. 181108-1-181108- 3, April, 2015
- [2] V. Kravets, O. Yeshchenko, V. Gozhenko, L. Ocola, D.Smith, J. Vedral and A. Pinchuk: "Electrodynamic coupling inregular arrays of gold nanocylinders", J.Phys, D: Appl Phys, Vol. 45. 045102(8pp), Jan. 2012.
- [3] T. Coenen, E. J. Vesseur, A. Polman, and A. F. Koenderink: "Directional emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy", Nano Lett. Vol. 11, pp.3779-3784.
- [4] S. Ohnuki,K. Nagasawa,T. Takeuchi:"Analysis of Electromagnetic Fields in a Metal Nano-Cylinder Chain Excited by Localized Surface Plasmons" IEICE Technical Report,PN2014-52,pp.155-158,Jan 2015
- [5] K. Nagasawa, R. Takahashi, S. Ohnuki: "Wavelength Response Analysis of the Localized Surface Plasmon in a Gold Nano-Cylinder Chain - Nonlocal Effect Due to Distance between Cylinders -" The 2015 IEICE General Conference, C-1-4, Mar 2015
- [6] J. M. McMahon, S. K. Gray, and G. C. Schatz: "Calculatiung nonlocal optical properties of structures with arbitrary shape", Phys. Rev. B., Vol. 82, pp.035423-1-035423-12, 2010.

Figure 2 Geometry of the gold nano-cylinder chain

Figure 3 Resonant peaks of gold nano-cylinder C6