L - 44

イオン化蒸着法による DLC 成膜におけるバンドギャップの改善について

Improvement in Bandgap of Diamond Like Carbon Films by Ion Plating Method

川津文平¹, 渡邉学², 胡桃聡³,松田健一³, 鈴木薫^{3,4} Bunpei Kawazu¹, Gaku Watanabe², Satoshi Kurumi³,Kenichi Matsuda³,Kaoru Suzuki⁴

Abstract: In this study, we report on diamond like carbon(: DLC) films on Si and SiO_2 substrates grown by ion plating method to develop it as wide-gap semiconductive device use. The band gap energy of growth film was 1.58 eV. Determined from the adsorbance spectrum with tauc plot method.

1. 研究背景

現代の情報化社会の構築には半導体技術の発展が必 要不可欠であり、この発展は大きな推進力となってい る. 現在の半導体産業の中心は Si 半導体となっており 集積回路や様々な電子デバイスに使われている. しか し発光デバイスや超高速の電子デバイスなどの需要が 高まり、これらのデバイスを実現するにはSiが持つバ ンドギャップ E_g では限界がある. そのため Si 半導体 よりも広いバンドギャップを持つ半導体が必要とされ ている. このようなワイドバンドギャップ半導体は大 容量情報通信や省エネルギーなどに期待されている. そこで我々はSi 半導体に変わる半導体材料としてダイ ヤモンド状炭素 (Diamond Like Carbon: DLC) に着目し た. DLC はダイヤモンド構造の sp³ 結合とグラファイ ト構造の sp^2 結合が混在したアモルファス構造である. この sp^3 結合, sp^2 結合の比率を変化させることによっ て DLC の Egが 0.8~3.3 eV^[1]の間で可変することが報 告されている. このことから DLC は Si の代替となる 半導体デバイスとしてへの応用が期待できる.

本稿では DLC デバイス化に向けてイオン化蒸着法による成膜と E_g について実験的に検証した結果について報告する.

2. 実験方法

2.1, DLC 薄膜の成膜方法

Fig.1 にイオン化蒸着法による DLC の成膜の実験装置図を示す. チャンバー内に基板をセットし,装置内を真空状態にする. チャンバー内に C_6H_6 ガスを流入させ, $(5 \sim 10 \text{ secm})$ フィラメントに 30 A を通電させて熱電子を発生させた. 熱電子は 60 V で印加したアノードで加速され, リフレクターで指向性を付与した. C^+ イオンは C_6H_6 ガスに熱電子を衝突させ発生させた. DLC 薄膜は基板に負パルスバイアス $(0.3 \sim 1.0 \text{ kV})$ を印加し C^+ イオンを吸引加工して成膜した. 成膜時間は 60 min とした.

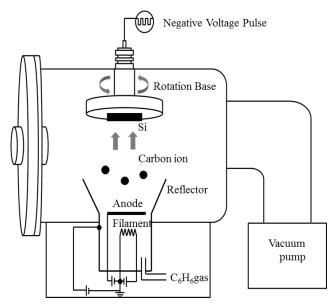


Figure 1. Schematic apparatus of the ion plating method

2.2, 集束イオンビーム(Focased Ion Beam: FIB) による膜厚の測定

Ga イオンをイオン源としてイオンビームを DLC に 照射. 照射箇所から発生した 2 次電子を検出すること により SIM 像を撮影し, 膜厚を測定した.

2.3 バンドギャップ E。測定

 $E_{\rm g}$ は基板に成膜された DLC 薄膜の透過率を算出し、 FIB で測定した膜厚の値を用いてタークプロット法に より算出した.

光源は重水素ランプとハロゲンランプを使用し200~860 nm の波長域で測定した.

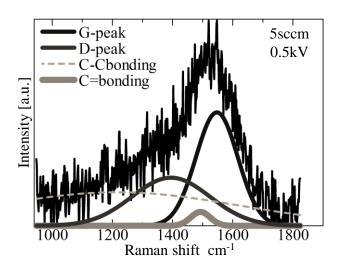
3.実験結果

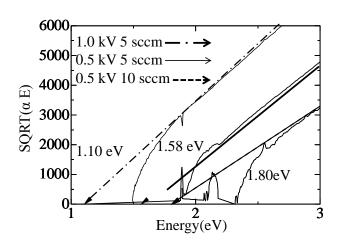
3.1, ラマン分光法による試料の測定結果

Fig.2 に成膜した DLC 薄膜のラマンスペクトルを示す. 測定したラマンスペクトルの現波形は 4 成分分離法により波形分離される. G-peak は $1550 \, \mathrm{cm}^{-1}$, D-peak

1:日本大学理工学部電気工学科,学生 2:日本大学院理工学研究科電気工学専攻,院生 3:日本大学理工学部電気工学科,教員 4:先端材料科学・材料創造研究センター

は 1350 cm^{-1} , 炭素の一重結合に起因するピークは 1150 cm^{-1} , 炭素の二重結合に起因するピークは 1500 cm^{-1} である. 成膜した薄膜は DLC 特有の波形と確認した.




Figure 2. Raman spectrum of the DLC film

3.2, FIB による膜厚の測定結果

Fig.3 に FIB 装置により撮影した DLC 薄膜の SIM 像を示す. DLC 膜厚は FIB 装置により照射される Ga イオンにより表面をエッチングし, イオン顕微像により観測した。0.5 kV 5sccm の膜厚は 460 nm と測定された.

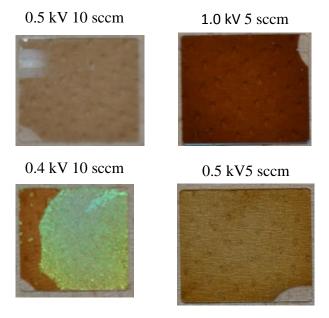

3.3, バンドギャップ E_g 結果

Fig.4 に成膜した DLC 薄膜の透過率より算出した E_g のグラフを示す。DLC の E_g はタークプロット法により算出した. $1.0 \, \text{kV} \, 5 \, \text{sccm}$ の時 $1.10 \, \text{eV}$, $0.5 \, \text{kV} \, 5 \, \text{sccm}$ の時 $1.80 \, \text{eV}$, $0.5 \, \text{kV} \, 5 \, \text{sccm}$ の時 $1.58 \, \text{eV}$ と算出された. 成膜した DLC は Si の $1.2 \, \text{eV}$ より高いことが分かった.

Figure 4. Transmission of DLC film. E_g of DLC films were derived by tauc plot method. Table1 に同様の方法で算出した E_g 負パルスバイアス

の関係を示す。 E_g の値は基板に印加する負パルスバイアスが低く成膜中の C_6H_6 ガス流入量が高いほど上昇する傾向を確認した。なお表の未記入箇所は薄膜が剥離したため、測定ができなかった。Fig.4に成膜したDLCとその表面が剥離してしまった画像を示す。

Figure 4.optical images of DLC films.

Table 1. The relation between $E_{\rm g}$ of DLC and bais voltage

	5 sccm	10 sccm
0.3 kV	-	-
0.4 kV	-	-
0.5 kV	1.58 eV	1.80 eV
1.0 kV	1.10 eV	-

4.まとめ

本研究ではイオン化蒸着法により Si 基板,石英基板に DLC を成膜しラマン分光法による評価した. 膜厚は FIB 装置により測定を行い, E_g は石英基板に成膜された DLC 薄膜の透過率測定より算出した. 負パルスバイアスが低く成膜中の C_6H_6 ガス流入量が高いほどバンドギャップ E_g の値が上昇する傾向を確認した.

参考文献

[1]K. Takamichi, S. Kurumi, and K. Suzuki, "Fabrication of Nanoscale Electrical Circuits on Diamond-Like-carbon Film by Scanning a Ga+ Focous Ion Beam", J. Nanoelectron. Optoelectron., Vol. 7, No. 3, pp. 257-278(2012).