O-18

フラストレート系バナジウムスピネル ZnV2O4における V サイトの Cr 置換効果

Cr substitution effects in frustrated vanadate spinel ZnV₂O₄

○草田隆良¹,山田隼人²,小野拓海²,前田穂³,高瀬浩一³,高野良紀³,渡辺忠孝³ *T. Kusada¹, H. Yamada², T. Ono², M. Maeda³, K. Takase³, Y. Takano³, T. Watanabe³

Abstract: Vanadate spinel ZnV_2O_4 is a typical geometrically-frustrated antiferromagnet. The V³⁺ (3*d*², *S* = 1) ions have *t*_{2g} orbital degrees of freedom and form pyrochlore lattice. We study effects of Cr substitutions on the frustrated magnetism of ZnV_2O_4 by evaluating magnetic properties of polycrystalline $Zn(V_{1-x}Cr_x)_2O_4$.

1. はじめに

近年,磁性物理学の分野では幾何学的フラストレート 磁性体の研究が盛んに行われている.幾何学的フラスト レート磁性体とは,磁性原子のスピン間に強い反強磁性 相互作用が働くにも関わらず,結晶構造による幾何学的 な制約を受けるため,低温でも磁気秩序が形成されない 磁性体である.その磁気的な不安定性から新奇かつ多様 な振る舞いを示すことが知られている.その中でも,ス ピネル酸化物 *AB*2O4 は,*A*,*B*の構成元素の組み合わせ 次第で様々な物質を作製でき,また磁性にも富んでいる ため盛んに研究が行われている.スピネル酸化物の*B*サ イトは頂点共有をした四面体によって構成されるパイロ クロア格子を形成しており,この格子は非常に強い幾何 学的フラストレーションを生じる構造として知られてい る(**Figure 1**).

我々は、バナジウムスピネル ZnV₂O₄に着目し、幾何学 的フラストレーション効果の研究を行っている. この物 質は、スピネル構造の A サイトを非磁性イオンである Zn²⁺、B サイトを軌道自由度を持つ磁性イオンである V³⁺ が占める結晶構造を持つ. ZnV₂O₄ は、ワイス温度が、 $\theta_{\rm W}$ = -820 K と反強磁性的であり、 $T_{\rm S}$ =50 K で立方晶から 正方晶への構造相転移、 $T_{\rm N}$ =40 K で反強磁性転移を示す [1] [2].本研究では、ZnV₂O₄ の V³⁺ を軌道自由度を持た ない磁性イオンである Cr³⁺ で置換した混晶 Zn(V_{1-x}Cr_x)₂O₄ の多結晶作製を行い、作製した試料の物性評価を磁化率 測定により行ったので、その結果を報告する.

Figure 1. Crystal structure of ZnV₂O₄.

2. 実験方法

Zn(V_{1-x}Cr_x)₂O₄ 多結晶は真空中での固相反応法により作 製した. 原料には、ZnO 粉末(99.9%)、V₂O₃ 粉末(99.9%)、 Cr₂O₃ 粉末(99.99%)を使用した. 原料を化学量論比に従い 秤量し、瑪瑙乳鉢を用いて混合、その後圧粉してペレッ ト状に固め、焼成を行った. 焼成は二段階で行い、第一 段階が 800°C で 60 時間、第二段階が 1000°C で 60 時間で ある. 作製した試料は砕いて粉末状にした後、粉末 X 線 回折(XRD)測定により結晶構造の評価を行い、磁化率の 温度依存性を測定して物性を評価した.

3. 実験結果

3-1. 粉末 XRD 測定

Figure 2に Zn($V_{1,x}C_{x,2}O_4$ 多結晶の粉末 XRD パターン を示す. 全ての試料においてほぼ単相のスピネル構造が 得られた. また, Cohen の最小二乗法で求めた格子定数 は Vegard 則に従っており, Cr の置換量 x の増加による格 子定数の系統的な減少を確認することができた(**Figure 3**).

Figure 2. Power XRD patterns of polycrystalline $Zn(V_{1,x}Cr_x)_2O_4$.

Figure 3. Lattice constant of polycrystalline $Zn(V_{1-x}Cr_x)_2O_4$ as a function of Cr concentration *x*.

3-2. 磁化率測定

Figure 4に Zn(V_{1-x}Cr_x)₂O₄多結晶のうちの $x=0 \ge x=0.1$ の試料のゼロ磁場冷却(Zero-Field Cooling : ZFC) 及び磁 場冷却(Field Cooling : FC) での磁化率の温度依存性を示 す. x=0では ~95 K 以下で, x=0.1では ~13 K 以下で ZFC \ge FC に履歴がみられ, スピングラス挙動を示して いる. 今回の実験では, x > 0.1の試料も含めたすべての 試料で低温でのスピングラス挙動を確認した. また, 常 磁性相では, x=0~1のすべての試料がキュリーワイス的 な振る舞いを示した. **Figure 5** に示すように, キュリー ワイス則から得られるワイス温度 θ_W はすべての試料で 負の値を示しており, 反強磁性相互作用が支配的である ことを示している. また, x = 0.7 で最も強く反強磁性相 互作用が抑制されていることが分かる.

Figure 4. Temperature dependence of magnetic susceptibilities in polycrystalline $Zn(V_{1-x}Cr_x)_2O_4$ (x = 0, 0.1).

Figure 5. Weiss temperature θ_W of polycrystalline $Zn(V_{1-x}Cr_x)_2O_4$ as a function of Cr concentration *x*.

当日の発表では、混晶 Zn(V_{1-x}Cr_x)₂O₄ の多結晶作製と磁 化率測定の実験結果について、より詳細に報告する.

4. 参考文献

- [1] Y. Ueda et al., J. Phys. Soc. Jpn. 66 (1997) 788.
- [2] S.G. Ebbinghaus et al., J. Alloys Compd. 370 (2004) 75.