O-19

バナジウムスピネル CdV2O4のフラストレート磁性への V サイトの Cr 置換効果

Cr substitution effects in frustrated vanadium spinel CdV₂O₄

○菅谷雄士¹,山田隼人²,前田穂³,高野良紀³,高瀬浩一³,渡辺忠孝³
*Y. Sugaya¹, H. Yamada², M. Maeda³, Y. Takano³, K. Takase³, T. Watanabe³

Abstract: Vanadium spinel CdV₂O₄ is an orbital-degenerate frustrated magnet, which exhibits a structural transition at $T_S \sim 85$ K and an antiferromagnetic transition at $T_N \sim 30$ K. We studied substitution effects of orbital-inactive Cr³⁺ for orbital-active V³⁺ in CdV₂O₄ by investigating magnetic properties of polycrystalline Cd(V_{1-x}Cr_x)₂O₄.

1. はじめに

近年,物性物理学の分野では幾何学的フラストレート磁性体の研究が盛んに行われている.幾何学的フラストレーション とは磁性体において,磁性原子のスピン間に強い反強磁性相互作用が働くにも関わらず,結晶構造の幾何学的制約により磁 気秩序が形成出来ない状況の事である.幾何学的フラストレート磁性体では、スピン揺らぎと軌道 ・電荷・格子自由度の結 合により、多彩な新奇物性が発現することが知られている.スピネル酸化物 *AB*2O4 は、幾何学的フラストレート磁性体の代 表格である.Figure 1 にスピネル酸化物の結晶構造を示す.スピネル酸化物の*B*サイトは、頂点共有した四面体で構成された パイロクロア格子を形成しており、このパイロクロア格子は非常に強い幾何学的フラストレーションを生じる構造として 知られている.

我々は、バナジウムスピネル CdV₂O₄について、幾何学的フラス トレート磁性への元素置換効果の研究を行っている.この物質は、 スピネル構造の A サイトを非磁性イオン Cd²⁺, B サイトを軌道自 由度を持つ磁性イオン V³⁺が占める(Figure 1). CdV₂O₄は、ワイス温 度が θ_W = -400 K と反強磁性的であり, T_S = 85 K で構造相転移, T_N = 30 K で反強磁性転移を示す[1].

Figure 1. Crystal structure of spinel oxide CdV₂O₄.

今回我々は CdV_2O_4 の V^{3+} を, 軌道自由度をもたない磁性イオン Cr^{3+} で置換した $Cd(V_{1-x}Cr_x)_2O_4$ 多結晶の作製と物性評価を行ったの で報告する.

2. 実験手順

 $Cd(V_{1,x}Cr_{x})_{2}O_{4}$ 多結晶(x = 0, 1.0)は真空中での固相反応法により作製した.原料には CdO 粉末(99.9999%), V₂O₃粉末(99.9%), Cr₂O₃粉末(99.9%)を用いた.CdV₂O₄では CdO 粉末を化学量論比で算出した質量に対し 1g あたり 0.1g の割合で過剰に秤量し、 ペレット状に固めて真空中で焼成を行った.焼成は 800°Cで 60 時間の条件で行った.CdCr₂O₄では CdO 粉末を化学量論比で 算出した質量に対し 1g あたり 0.3g の割合で過剰に秤量し、ペレット状に固めて真空中で焼成を行った.焼成は 950°Cで 24 時間の条件で行った.作製した試料は粉末 XRD 測定で結晶構造の評価を行い、磁化率の温度依存性を測定して物性を評価し た.

3. 実験結果

Figure 2 に CdV₂O₄ と CdCr₂O₄の多結晶試料の粉末 XRD パターンを示す. CdV₂O₄ では不純物として CdV₃O₇のピークが見られ、CdCr₂O₄ では不純物として CdV₃O₇のピークが見られた. Cohen の最小二乗法で求めた格子定数は、報告値に近い値が得られた. Figure 3 に CdV₂O₄の磁場冷却(FC: Field Cooling)とゼロ磁場冷却(ZFC: Zero-Field Cooling)での磁化率の温度依存性を示す. ワイス温度は θ_W = -412 K と反強磁性的であり, $T_S \sim 83$ K で構造相転移, $T_N \sim 28$ K で反強磁性転移に伴う変化がみられた.

Figure 3. Temperature dependence of magnetic susceptibilities in polycrystalline CdV_2O_4 .

4. まとめ

 CdV_2O_4 および $CdCr_2O_4$ の多結晶作製と磁化率測定を行った. CdV_2O_4 試料には不純物として CdV_3O_7 が, $CdCr_2O_4$ 試料には不純物として Cr_2O_3 が含まれていることがわかった. 純良な単相スピネル試料を得るには、原料の仕込み組成と焼成条件の最適化が必要である. 当日は、 $Cd(V_{1,x}Cr_x)_2O_4$ の実験結果について報告する.

5. 参考資料

[1] Z. Zhang et al., Phys. Rev. B 74, 014108 (2006).