O-28

二次元金属粒子層の Kosterlitz-Thouless-Berezinskii 転移温度の制御

Control of Kosterlitz-Thouless-Berezinskii transition temperature of a two dimension metal particles layer

○中拓也¹, 羽柴秀臣²

*Takuya Naka¹, Hideomi Hashiba²

Abstract: Aligned metal particles shows its conductivity change from metallic to insulative at a temperature, so called Kosterlitz-Thouless-Berezinskii transition. We study transport property of two dimensionally aligned metal clusters by capacitor-network model. With clusters of 10 nm in diameter, its transition temperature changes at a gradient of 5 K/nm with a separation of two clusters.

1. はじめに

Kosterlitz-Thouless-Berezinskii 転移(KTB 転移)とは、 金属粒子間の導電性が転移温度を境に金属から,電子・ 正孔対が互いに束縛し合う絶縁に転移する現象^{[11}であ る.本研究では2次元状に配置した微小金属クラスタ に現れる KTB 転移温度のクラスタ間隔の依存性を明 らかにする.この依存性は,半導体を用いない金属薄膜 によるスイッチング素子や数 nm 変化の圧力素子など の MEMS への応用が期待できる.

2.原理

○電荷 KBT 転移

2 次元金属クラスタは簡単なモデルのコンデンサー ネットワークモデル^[2]であらわされる (Fig1).

Figure 1. Schematic diagram of two dimensional metal particle layer.

あるコンデンサーから r だけ離れた別のコンデンサー に電子を移動させたとき,電子と正孔の相互作用

エネルギーは
$$\frac{r}{d}\sqrt{\frac{c_0}{c}} <<1 0$$
とき
 $U(r) = \frac{e^2}{2\pi c} ln\left(\frac{r}{d}\sqrt{\frac{c_0}{c}}\right)$ (1)

となる. eは素電荷, Cは静電容量, C_0 はアースからの 静電容量, dは平行板間の距離である.

この結果が無限遠方までこの対数型の相互作用が続く 場合, KTB 転移の臨界温度は

$$T_C = \frac{e^2}{8\pi C k_B} \tag{2}$$

となる. 温度が T_c より低い場合,電子と正孔対が互い に束縛状態になる. この相互作用がすべての領域で作 用するため, $r \to \infty \subset U(r) \to \infty$ となり絶縁となる.

またTが T_C 近傍で $T>T_C$ の場合,電気伝導率の温度 依存性は

$$\sigma \propto \exp\left[-\frac{2b}{\sqrt{\frac{T}{T_C}-1}}\right] \tag{3}$$

となる. このとき bは1程度の定数である. また,静電容量 Cは誘電率 ε と平行版面積 S より

$$C = \varepsilon \frac{s}{d} \quad (4)$$

であるから,(2)式は

$$T_C = \frac{e^2 d}{8\pi \varepsilon k_B S} \tag{5}$$

となる.

1:日大理工・学部・物理. Department of Physics, College of Science and Technology, CST., Nihon-U.

2:日大·教員·量科研. Superviser, Institute of Quantum Science, CST., Nihon-U

平行板面積*S*はクラスタのサイズに等しい.ここで,ク ラスタを直径10nm,平行板距離を*d*=1nmと仮定すると,

(5) 式から Tc=11.2K となるため,(3) 式より Fig.2 が示せる.この図から,一次になる部分は Ohm の法則を表し, KTB 転移のため変化し,一定になる部分は絶縁を表している.変化しているため,測定ではフィッティング曲線を出すと Tc が求められる.

温度 T [K]

Figure 2. Temperature dependence of electrical conductivity of two dimensional metal particle layer. Above 11K, is the conductance follows Ohm's low, below that conductance is zero.

転移温度は Fig.3 で示すようにクラスタ間距離に対して 10K/nm 程度の変位を持ち,一般的な冷凍機が 0.1K 以下 の温度制御性を持つことを考えると,十分に測定可能で ある.

Figure 3. Transition temperature Tc versus separation distance d

Fig.3は、微小クラスタが小さすぎると、サイズ効果により、離散準位が現れるため、変化が予想される.このため検討すべき課題である.

3. 試料構造

今回作製する試料は Fig. 4 のように, Si 基板上に Al 薄膜を作製し,自己集積化した Al クラスタを用い, KTB 転移を測定する. クラスタサイズは, Al 薄膜の膜厚に依存した大きさになる.

Figure 4. The 2-d layer is formed on narrow part in the Al layer, and is connect to Au pad.

4.まとめ

本稿ではコンデンサーモデルを適応し, KTB 転移温度 がクラスタ距離に比例することを導いた. 今後, 実際に サンプルを作製し, KTB 転移の温度による抵抗変化を測 定する予定である. そして, 転移温度の間隔依存性につ いて明らかにすることを目指す.

5. 参考文献

[1] S.Kobayashi, A.Kanda and R.Yamada: [[]Charge Kosterlitz-Thouless Transition in Two-Dimensional Arrays of Small Tunnel Junctions J Jpn. J. Apple. Phys. Vol.34, No 8B, pp4548-4551, 1995

[2] 川畑有郷:「新物理学シリーズ 31 メゾスコピック系 の物理学」、初版第4刷、培風館