B-23

多数回繰返し載荷を受ける RC 造建物の十字形柱梁接合部の構造性能に関する実験的研究 (その1 実験概要)

Experimental Study on Structural Performance Interior Beam-Column Joints

RC Building under Multi Cyclic Loading

(Part 1 Outine of Test)

○加賀山陽平¹, 草川和広¹, 横澤輝², 北嶋圭二³, 中西三和³, 安達洋⁴

*Youhei Kagayama¹, Kazuhiro Kusakawa¹, Hikaru Yokosawa², Keiji Kitajima³, Mitsukazu Nakanishi³, Hiromi Adachi⁴

Abstract: This paper presents the outline of experiment.

1. はじめに

2003 年の十勝沖地震では震源より約 200km 離れた 苫小牧の石油タンクで火災が生じ、長周期地震動によ る被害が注目されるようになった. 2011年の東北地方 太平洋沖地震においても,震源から遠方の関西圏にお いて固有周期が長い超高層建物が継続時間の長い多数 回繰返しの地震動を受ける挙動が注目された. 今後発 生が予想される南海トラフを震源とする巨大地震では, 三大都市圏の超高層建物に与える影響が危惧されてい る 12). また, 柱梁強度比(節点位置での柱の曲げ終局モ ーメント/節点位置での梁の曲げ終局モーメント)が小 さい場合において、現行の計算規準 3では梁曲げ降伏 が先行する破壊を期待する接合部であっても、接合部 曲げ破壊となることが危惧されている.

このような背景より、昨年度は柱梁強度比が 1.2 付 近の RC 造建物十字形柱梁接合部を対象に加力実験を 行った.実験での最終破壊状況は柱梁接合部のせん断 破壊の様相を呈していたが、梁主筋が降伏していたこ と, 接合部入力せん断力の急激な低下が生じていない ことから,最終破壊性状は接合部曲げ破壊と判定され た.しかし、昨年度の試験体は接合部せん断余裕度が 1.0 付近であったため、接合部せん断破壊の可能性も否 定できない状況であった4.

そこで本研究では、接合部せん断余裕度を 1.5 と高 くし,昨年度同様に柱梁強度比を1.2付近とし,接合部 せん断破壊が生じない試験体に対し加振実験を行う. また、断面寸法が同一の試験体に対して軸力比の値の みを変え, 柱曲げ終局強度を高くした試験体に対し, 同様に加振実験を行った.実験は大変形を経験するま での漸増増分載荷実験を静的及び動的に行い,最大耐 力近傍の層間変形角における多数回繰返し載荷実験を 動的に行った. 柱梁強度比や載荷方法の違いが接合部 挙動に及ぼす影響を確認する.

2. 実験概要

2.1 試験体概要

Table1 に試験体概要を, Table2 に材料特性一覧を, Fig.1 に試験体概要図を示す. 試験体は, RC 造建物 の十字形柱梁接合部を想定した 1/4 の模型とした. 軸力比 0.15 の試験体に静的及び動的漸増増分載荷 実験を行ったものを C04-S, C04-D 試験体(試験体末

Table1 List of Material									
	試験体名	D04_D	C04_D	$C04_S$	C05_S				
載荷方法		多数回繰返し載荷	増増分載荷						
			静的						
コンクリー	ート強度 [N/mm ²]	52							
梁	主筋	14-D13(SD345)							
	せん断補強筋	2-S6(KSS785)@35							
柱	主筋	12-D10(SD345)							
	せん断補強筋	4-S6(KSS785)@30							
接合部	せん断補強筋	6×2 -S6							
	せん断余裕度	1.50							
	付着余裕度	1.18		1.40					
柱梁曲げ強度比		1.18		1.92					
軸力比 n		0.15 0.							

Table2 Material Properties of Concrete and Reinforcement

¬ >> <i>p</i> _	圧縮強度	圧縮ひずみ	ヤング係数	割裂強度		
1799-1	$[N/mm^2]$	[µ]	$ imes 10^4 [N/mm^2]$	[N/mm ²]		
C04-S, C05-S	52	2995	2.85	3.0		
C04-D, D04-D	52	3135	2.94	2.9		
分位	降伏強度	降伏ひずみ	引張強度	ヤング係数		
ус ал	$[N/mm^2]$	[µ]	[N/mm ²]	$\times 10^5 [N/mm^2]$		
D10(SD345)	375	2445	578	1.95		
D13(SD345)	349	1936	519	1.86		
S6(KSS785)	927	4460	1180	2.10		

1:日大理工・学部・海建 2:日大理工・院(前)・海建 3:日大理工·教員·海建 4:日大·名誉教授 尾 S:静的, D:動的), 軸力比 0.40 試験体に静的漸増 増分載荷を行ったものを C05-S 及び動的多数回繰返 し載荷実験に用いた試験体を D04-D とした. なお, Table1 中の接合部せん断余裕度, 付着余裕度, 柱梁強 度比は材料試験結果を用いて算出した値である.

2.2 載荷概要

Fig.2 に載荷装置を示す.試験体は柱頭,柱脚をピン 支持,左右の梁端部をローラ支持とし,地震時に生じ る接合部の応力状態を再現した.水平力は,反力壁に 取り付けたアクチュエーター(動的載荷)と油圧ジャッ キ(静的載荷)により,柱頭の変位制御で正負交番繰返し 載荷を行った.アクチュエーター及び油圧ジャッキに よって負荷した水平力はL字ビームを介して試験体に 伝達され,L字ビームはパンダグラフ機構により水平 に維持されている.柱軸力は,軸力用油圧ジャッキに より一定軸力を負荷した.軸力用油圧ジャッキ上部に スライド支承を設けることで試験体の水平変位に追随 し,常に柱頭図心に定軸力が作用するように荷重制御 した.荷重の計測は水平加力用のアクチュエーター及 び油圧ジャッキに組み込まれたロードセルを用いた.

また,梁端部に設置したロードセルにより梁のせん断 力を計測した.試験体の水平変位は,柱頭部分に取り 付けた巻き込み式変位計を用いて計測した.また,接 合部パネルゾーンの対角変位を測定した.鉄筋の歪は, 主に接合部周辺の柱主筋,梁主筋,せん断補強筋に歪 ゲージを取り付け計測した.サンプリング間隔は動的 載荷では,0.01secとして多点同時計測を行った.

目標 層間変形角 <u>R[rad]</u> 繰返し回数	角 1/500 女	1/200	1/100	1/75 10回	1/50	1/30	1/20	-			4-			<u>装置</u> ① ② ③ ④	<u>『一覧</u> 水平用ア L字ビー パンタグ 軸力油圧	クチュエ- ム ラフ ジャッキ	ータ
プロトタイ 周期 Tp[sec]	プロトタイプ 周期 Tp[sec] 2.11		R=1/100相当 の等価周期 3.3	R=1/75相当 の等価周期 3.89	当 月 一 最大速度一定		-	2 6 スライド支承 3 スライド支承 1 1									
動的載荷 実験時周期 Tp/√4[sec	月 1. ;]	05	1.65	1.95	2. 92	4.86	7. 92	-				iσ 2 Ι		-Β ₋ D	右梁せん ine	断力	
1/500 60 40 20 型型 -20 -40 -60 0	1/100 00 1/	75 1 60	部材角 1/50 1/. 	R 30	1/2	20	200	60 4 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1/500 0 0 0 0 0 0 0 0 0 0 0 0) 1/100 1/200 1/ 	1 75 	/50 1/200 1セ 1セ 5セット 80 度 b) 多数[部材角 1/50 	g Out I R 1/50 200 1 モット モット 1 1 1 1 20 載荷		1/5 1/200 4 tr 4 tr 50 180	
Fig. 3 Loading Schedule																	

Table3 Summary of Loading Schedule

2.3 加力スケジュール概要

Table3 に加力スケジュール概要, Fig.3 に加力スケジュ ールを示す.加力スケジュールは漸増増分載荷では部 材角(以降, Rと称す)R=1/500, 1/200, 1/100, 1/75, 1/50, 1/30, 1/20 の漸増増分変位を与え実験を終了した. 多数 回繰返し載荷では漸増増分載荷同様 R=1/500, 1/200, 1/100, 1/75, 1/50 と漸増増分変位を与えた後, 損傷限 界レベルの R=1/200, 最大耐力近傍の 1/50 を 1set とし, 15set 繰返し載荷した.繰返し回数は,継続時間の長い 地震動を再現するために、各部材角において10回とし た. なお,1回の繰返しを1Cとする.また,動的載荷 時の加振周期(T_D)は試設計建物(以降, プロトタイプ)の 時刻歴応答解析結果を参考に決定した.R=1/500,1/200, はプロトタイプの弾性一次固有周期(T_P)を, R=1/100, 1/75 ではそれぞれ同層間変形角時における等価周期に, 角 R=1/75 時の最大速度で一定とした.

3. まとめ

本報では実験概要について示した.

【参考文献】

- PA - PA

1)大川出:東日本大震災の最終報告を踏まえて③長周期地震動の評価について、独立研究法人建築研究所、2012.6

2)南海トラフの巨大地震モデル検討会他:南海トラフ沿いの巨大地震による長周期地震動に関する報告, 2015.12

3)鉄筋コンクリート構造保有水平耐力計算規準(案)・同解説,日本建築学会 2016.4 4)斎藤純毅:多数回繰返し載荷を受ける柱梁曲げ強度比の小さい RC 造十字形接合部の

構造性能に関する実験的研究,日本大学大学院理工学研究科修士論文,2016 5)石丸辰治他:動的実験法における相似則について,日本大学学術講演会論文集,1985