B-51

長期荷重が PC 梁の地震時挙動に及ぼす影響に関する実験的研究 その2 実験結果

Experimental Study on Effects of Eternal Load on Seismic Behavior of Prestressed Concrete Beams(Part 2)

石井誠士², 藤浪由揮¹, ○斉田健志¹, 福井剛³, 浜原正行³ Seiji Ishii, Yuuki Fujinami¹, *Kensi Saita², Fukui Tsuyoshi³, Hahara Masayuki

Abstract: This report shows the experimental results of the loading test described in the previous report (part 2), and discusses the limit values obtained by the experiment.

1. はじめに

本報告は前報 (その 2)で述べた載荷試験の実験結果を 示し,実験により得られた諸限界値とについて考察す るものである。

2. 破壞経過

Fig.1 に各試験体の最終破壊状況を示す。また,以下 に No1 から No3 試験体の破壊経過を記す。

No1 試験体 No1 試験体の初期曲げひび割れは,回転角 0.17%時において南側梁端部下端に発生した。最大耐力は回転角 2%時に梁両端部においてコンクリートの圧壊により経験した。引張側の PC 鋼棒は回転角 3%時に降伏した。その後,回転角 5%時まで最大耐力の90%以上の荷重を保持した。

No2 試験体 No2 試験体の初期曲げひび割れは,回転 角 0.25%時に南側梁端部で発生した後,同一部材角レ ベルにおいて錘位置に曲げひび割れが発生した。最大 耐力は負側で回転角 2%時,正側で回転角 3%時に梁両 端部のコンクリートの圧壊を伴い PC 鋼棒が降伏して 経験した。その後,回転角 5%時まで最大耐力の 90%以 上を保持した。ひび割れは No1 試験体と比較すると, 梁上端ではフェイス位置寄りに集中して発生したが, 梁下端では端部から中央部に向かって広い範囲で発生 した。 No3 試験体の最大耐力はNo1 及びNo2 試験体より15% 程度小さい値となった。その後,回転角5%時まで最大 耐力の90%以上を保持した。ひび割れは梁上端では No2 よりさらにフェイス位置寄りに集中して発生し, 梁下端では梁全長のさらに広範囲にわたって発生した。

3. 地震荷重によるせん断力と梁端部回転角の関係

図2に各試験体の地震荷重によるせん断力と梁端部 回転角の関係を示す。No1とNo2試験体は、3%の部材 角レベルまでは原点復帰傾向が強い履歴ループ形状を 示した。最大耐力を経験した後は若干ではあるがルー プ幅が太くなっている。一方No3試験体では、部材角 1%を超えるとやや細身ではあるが紡錘形の履歴ルー プ形状を示しており、他の2体とは明らかに異なる性 状を示していることがわかる。

4. 諸元界値

 $30 \frac{V(k)}{r}$

20

4.1 地震荷重による最大せん断力

地震荷重による最大せん断力は,梁両端に降伏ヒンジが形成された No1 および No2 試験体は(1)式により スパン内ヒンジが形成された No3 試験体は(2)式により 算出した。

V(kN)

30

20

No1, No2 :
$$_{c}V_{u} = 2 \cdot M_{u} / L_{o}$$
 ------(1)
No3 : $_{c}V_{u} = \frac{2 \cdot M_{u} - M_{L} - M_{L}'}{L_{o} - g}$ -----(2)

$$M_{u} = T_{y} \cdot d_{r} + T_{py} \cdot D - \frac{(2 \cdot T_{py} + T_{ry})^{2}}{2 \cdot b \cdot \sigma_{B}} \quad ----- \quad (3)$$

ここに, L_0 :内法スパン, M_L :梁端部の長期荷重による 曲げモーメント(18.27kNm), M_L :錘位置における長期 荷重による曲げモーメント(36.47kNm) g:梁端部から錘 位置までの距離, T_y, T_{py} : 引張鉄筋降伏荷重, PC 鋼棒降伏 荷重, dr, dp: 引張鉄筋と引張側 PC 鋼棒の有効せい Table.1 に示すように最大せん断力の実験値/計算値は 0.98~1.02 の範囲にある。

Table1. Maximum shear force

試験 体名	実験值 eVu(kN)			計算值_V.	実験値
	正	負	平均	(kN)	/計算值
No1	28.4	29.2	28.8	28.2	1.02
No2	28.2	27.3	27.8	29.4	0.95
No3	24.3	24.5	24.4	25.1	0.98

3.2 降伏時部材角

降伏時部材角の実験値は,最大せん断力の 90%のせん断力時の部材角と定義した。同計算値は PC 造技術 基準解説¹⁾式によるもので,降伏時剛性低下率 a_yの算 定に際してはシアスパン比 a/D の値を長期荷重の有無 にかかわらず L₀/2D とした。Table2 に試験体の降伏時 部材角の実験値と計算値の一覧を示す。計算値に対す る実験値の比は 1.00~1.22 の範囲となった。これより 本実験の範囲では,降伏時剛性低下率の算定において, 長期荷重の有無,降伏ヒンジの発生位置の違いにかか わらずシアスパン比 a/D の項を L₀/2D とすることで比 較的精度良く推定できることが分かる。

Table2. List of member angle at yield

試験	実験值 _e θ _y (%)			計算値	実験値 /
体名	正	負	平均	$_{c}\theta_{y}(\%)$	計算値
Nol	1.27	1.26	1.27	1.20	1.05
No2	1.25	1.24	1.25	1.24	1.00
No3	1.21	1.37	1.29	1.06	1.22

4. 曲率分布

Fig.3 に長期荷重を負荷した試験体の最大耐力時に おける正側ピーク時の材軸方向の曲率分布を示す。同 図中には前変形レベルのピーク時の結果も併記した。 なお、曲率は梁せいDを乗じることで無次元化して示 している。

No2 試験体 長期荷重の影響で南北の曲率の対称性が 崩れている。曲率は梁端部の1.0D(300mm)程度の狭 い範囲に集中しており,前変形レベルのピーク時と比 較すると,南側材端の曲率が急激に増大していること がわかる。 No3 試験体 長期荷重の影響により北側錘位置の曲率 が局所的に大きくなっていることから、この位置でヒ ンジが形成されていることが推察できる。また、北側 端部の曲率は No2 試験体と比べると極めて小さい。

5. 長期荷重時と残留変形時の鉛直たわみ分布

Fig.3 に長期荷重を負荷した No2 と No3 試験体について、最大経験部材角の増大に伴う長期荷重時および 残留変形時の鉛直たわみ分布の推移を示す。ここで残 留変形時は、各変形レベルにおける第1サイクル載荷 完了時と定義し、地震荷重によるせん断力がゼロ、す なわち南北の串形ジャッキの荷重が等しくなった時の 値を表している。同図より、いずれも経験最大部材角 の増大に伴って徐々にたわみが大きくなり、部材角2% 時に急増しはじめていることがわかる。載荷点に降伏 ヒンジが生じなかった No2 試験体では各変形レベルに おいていずれも中央部のたわみが最大値となった。一 方 No3 試験体では、載荷点位置に降伏ヒンジが形成さ れた部材角3%を超えると載荷点位置のたわみが最大

6. まとめ

錘位置に降伏ヒンジが発生した No3 試験体は他の 2 体とは異なり、小さい変形レベル時から紡錘形の復元 力特性を示した。No3 試験体の最大荷重時における曲 率分布は降伏ヒンジ形成位置の狭い範囲に集中し、正 側材端の曲率は小さかった。鉛直たわみは最大耐力を 経験した以降に急増する傾向が見られた。

参考文献

 国土交通省国土技術政策総合研究所,独立行政法 人建築研究所:プレストレストコンクリート造技 術基準解説及び設計・計算例,2009年9月