三軸試験での砂のせん断剛性の評価 -ベンダーエレメント試験による検討-Estimation of Shear Modulus of Sands during triaxial test -Investigation of Bender Element Test-

○小林亮太¹,山田雅一²,道明裕毅²,實松俊明³,太田 宏³,溜井一基¹ *Ryota Kobayashi¹,Masaichi Yamada²,Yuki Domyo²,Toshiaki Sanematu³,Hiroshi Ota³,Kazuki Tamei¹

Abstract: In this study, we conducted a bender element test during triaxial test by using the lissajous response and using the identified resonance frequency, it is possible to easily and accurately obtain the shear modulus.

1. はじめに

本研究では、掘削時における地盤のリバウンド問題に着 目し、砂の載荷および除荷過程における変形特性の評価を 目的としている.そこで、本報では三軸試験機による砂の 載荷・除荷過程において、同時に BE 試験を実施した.

室内土質試験で変形特性を求める方法には,静的載荷法, 振動試験法,波動試験法がある.その中で,波動試験法とし て位置付けられるベンダーエレメント試験(以下 BE 試験) は、非破壊試験であること、BE 自体が小さいため比較的容 易に他の試験機と併用できることから、応力状態の変化す る地盤の変形特性を把握するために本報で行う三軸試験中 における変形特性の測定において有用な試験法である.ま た,砂質土と粘性土に対する BE 試験法は既に基準化され ている¹⁾. ただし,基準化されている試験法では, 5kHz~ 50kHz の範囲における 5 種類程度の異なる周波数で実施す ることが望ましいとされており、応力状態の変化する圧密 試験中において,同じ応力状態でいくつもの周波数でBE試 験を行うことは困難である.そこで張らの研究2によって提 案されたセメント安定処理土に対する初期せん断弾性係数 の評価法を適用し、この張らによる手法を用いた BE 試験 を三軸試験中に実施し、砂地盤に対する適用の検討を行う. その初期段階として、乾燥砂及び飽和砂を対象とし、等方 圧密試験中に BE 試験を実施し、本評価法が砂試料に対し 適用可能かどうかを検討する.

2. 試験概要

2.1 試験装置

装置はBEに任意の電圧波形を発生させるファンクション ジェネレータと, せん断波を受信するオシロスコープを三軸 試験装置に組み合わせたもので,送信波と受信波を PC に転 送することが可能である.本試験に用いた BE は,幅 10mm, 自由長(供試体貫入部)3mm,厚み 0.9mm であり,キャップ (φ5cm)とペデスタル (φ5cm)の中央部分に取り付けた.試験装 置の概略図は住吉ら⁴を参照されたい.

2.2 試料

試験に用いた試料は、豊浦砂 (ρ_S =2.631g/cm³, e_{max} =0.97, e_{min} =0.62) である.

2.3 試験方法および試験条件

軸対称応力条件下での任意の等方応力状態における乾燥 砂及び飽和砂の初期せん断剛性を評価するために,等方圧 密試験を実施した.供試体 (直径 5cm,高さ 10cm)は空中落 下法で作製し,初期の相対密度 Dr は 50%とした.飽和砂に 関しては,間隙圧係数 B が 96%以上であることを確認した. 等方圧密試験は,等方応力状態を保ったまま,それぞれ Fig.1, Fig.2 に示すような応力経路で乾燥砂においては,鉛直応力 $\sigma'_v=$ 側方応力 $\sigma'_h=300$ kN/m²,飽和砂においては,鉛直応力 $\sigma'_v=$ 側方応力 $\sigma'_h=200$ kN/m² まで段階的に載荷し,その後 同じ応力径路で除荷した.各段階での圧密終了後に BE 試験 を実施した.

BE 試験は、リサージュ応答を用いて同定した共振周波数 を用い実施した. リサージュ応答を用いた共振周波数の同 定法に関しては張らの報告²⁾を参照されたい. 本システムに よるリサージュ応答を用いた弾性波速度の評価法のフロー チャートを Fig.3 に示す.

せん断波の伝播時間の同定は時間領域法(T.D.法)¹⁾とし, 伝播時間 Δt は,送信波と受信波の立ち上がり点の時間差 Δt_s (start-to-start)と送信波と受信波のピーク点の時間差 Δt_p (peak-to-peak)の平均値から測定システムの遅延時間 Δt_d を 差し引いて求めた.

本報試験中における BE 試験によって得られた波形の一 例を Fig.4 に示す. Fig.4 より受信波形を明確に確認できるこ とが見て取れる.また,送信波と同じ周波数の受信波が第一 波目で容易に確認することができることを見て取れ,BE 試 験において問題とされてきた伝播時間の同定に高度な工学 的判断が必要とされる問題に対して進展が得られたことが 確認できる.

1: 日大理工・学部・建築 2: 日大理工・教員・建築 3: 鹿島建設株式会社

Fig.6 Dr=50% for $G_B/F(e) \sim \sigma'_o / \sigma'_r$ concernment (Saturated sand)

Fig.7 Variation of esonance frequency

3. 試験結果

BE 試験によるせん断波速度 Vs から得られるせん断剛性 GB は(1)式から求められる.

$$G_{\rm B} = \rho V_{\rm s}^2 \quad (kN/m^2) \tag{1}$$

ここに, ρ: 土の密度(kN·s²/m⁴), V_s: せん断波速度(m/s)で ある. 等方応力状態での土の初期せん断剛性 G_{max} は(2)式で 表される⁵.

$$G_{max} = A \cdot F(e) \cdot \left(\sigma_{o}^{\prime} / \sigma_{r}^{\prime}\right)^{n} \quad (kN/m^{2})$$
(2)

ここに, A:材料定数(kN/m²), F(e):間隙比関数でF(e)=(2. 17-e)²/(1+e), o'_o:有効拘束圧, o'_r:基準応力(=98.1 kN/m²), n:指数である.

Fig.5 と Fig.6 には、 $G_B/F(e)$ と正規化した有効拘束圧 σ '。の 関係を示す.ここで、 σ '。 $=\sigma$ '、 $=\sigma$ 'h となる.同図中には岩崎ら ³⁾がきれいな砂に対して共振法試験を行い、せん断ひずみ $\gamma=10^6$ と $\gamma=10^5$ に対する G_{max} の提案式を併せ示した.両図 より本試験で得られた G_B は共振法試験で得られた初期せ ん断剛性と良い対応を示している.この結果から共振周波 数を用いた BE 試験を行うことにより正確なせん断波速度 を評価できることがわかる.

Fig.7 に飽和砂に対する試験の際に得られた共振周波数の 変化を示す. Fig.7 から圧密応力の増加に伴って共振周波数 は変化していることが分かる.時間領域法(T.D.法)において は伝播時間の同定に高度な工学的判断が必要となる場合が ある. 従って, 地盤工学会基準による試験法を採用すると, 応力状態が変化する過程でのせん断波速度の評価が困難と なる. このようなケースで正確に BE 試験を行うためには, リサージュ応答を用いて測定時に共振周波数を把握する必 要性がある. 今後, 砂地盤の挙動の更なる把握のため, K₀ 圧密試験を行う予定であるが, その試験に対しても圧密中 において共振周波数を容易に同定できるリサージュ応答を 用いた共振周波数の同定法は有用であると考えられる.

4. まとめ

本報告をまとめると以下の通りである.

- (1)等方圧密試験中の砂試料においてリサージュ応答を用い ることによって共振周波数を求めることができる.
- (2)リサージュ応答を用いた BE 試験から得られた砂試料の せん断剛性は、共振法試験で得られた初期せん断剛性の 実験式とほぼ整合した.

【参考文献】

- 地盤工学会:ベンダーエレメント法による土のせん断波速度測 定方法,新規制定地盤工学会基準・同解説(2013 年度版),JGS 0544,2014.
- [2] 張文思他:安定処理土の弾性波速度システムの開発,日本大学 大学院理工学部研究科建築学専攻修士論文梗概集, 2016.
- [3] Iwasaki, T. and Fumio, Tatsuoka, Solis and Foundations, Vol.17, No.3, pp.19-35, 1977.
- [4] 住吉良子他:ベンダーエレメントによる砂のせん断剛性の評価, 平成20年度日本大学理工学部 学術講演会予稿集, pp. 46, 2008
- [5] Hardin, B.O. and Richart, F.E, :Dynamic prestraining of dry sand, Jr. of ASCE, Vol.89, pp.33-65. 1963