埋込み杭工法における杭の先端支持力に関する基礎的研究 低強度の根固め部を有する模型杭の模型実験 Fundamental Study on Vertical End Bearing Capacity of Pile Constructed by Prebored Method Laboratory Test of Pile with weak part

○松本 尚¹, 佐藤秀人², 鹿糠嘉津博³, 田子 茂³, 宮崎世納³ *Sho Matsumoto¹, Hideto Sato², Katsuhiro Kanuka³, Shigeru Tago³, Sena Miyazaki³

The objective of this study is to make clear the characteristics of vertical bearing capacity of a pile-end, which installed by the prebored pile construction method. We performed laboratory axial loading test and observe the Failure mode of root hardening part. We discussed the pile-end resistance in order to put to practical use for the structural design of piles.

1. はじめに

基礎杭は、十分な先端支持力を確保することが重要 項目のひとつである.埋め込み杭工法に分類されるプ レボーリング根固め杭工法では、地盤のばらつきやス ライム混入などによって、根固め部の強度が不足し、 先端支持力が過少となる可能性がある.本研究では、 根固め部の強度と杭先端部の形状を試験パラメータと し、低強度の根固め部を有する際の支持力傾向および 根固め部の破壊形状を、模型実験によって検討する.

2. 杭の模型載荷実験

2.1 試験杭

試験杭の形状と根固め部の詳細を Figure 1,2 に示す. 試験杭は,杭径 D=48.6mm,肉厚 t=3.2mm,長さ L=600mm の電縫鋼管を用いた.杭の先端は先端下方厚 さ=50mm として,石膏(焼石膏 A 級)によって覆い, 水石膏比(W/P=60~120%)によって根固め部強度を変 化させた押込試験(閉端杭シリーズ)を実施した.次 に根固め部の W/P=120%として,先端に外径の大きな 有孔定着円盤(外径 De=58,65,75mm)を取り付けた 押込試験(Pシリーズ)を実施した.根固め部に用いた 石膏の一軸圧縮試験の結果を Table 1 に示す.

2.2 試験土槽および模型地盤

試験土槽は,直径 1000mm,深さ 1000 mm の鋼製円 形土槽を用いた.模型地盤は,気乾状態の珪砂5号(飯 豊産)を使用し,2重分散網を用いた多孔式空中落下法 ¹⁾によって作成した(落下口径:9 mm,落口間隔 100 mm, 落下口~分散網距離:300 mm).模型地盤の緒元を Table2 に示す.

2.3 載荷計測方法

静的押込み試験は、Figure 3 に示す変位制御式電動載 荷装置(最大載荷能力:20kN)を用いて、1mm/minの 速度で行い、杭頭荷重と杭頭変位を計測した.

3 実験結果および考察

3.1 先端荷重~変位関係

Figure 4 に,根固め部強度を試験パラメータとした 閉端杭シリーズ,Figure 5 に定着円盤の外径を試験パラ メータとした P シリーズの試験結果を示す.

基準杭に対し,根固め部があるものは,杭先端抵抗 が大きく増加している.根固め部強度を変化させたと ころ,載荷初期(変位 3mm 程度まで)は,荷重変位関

1. 日大理工・院(前)・建築 2. 日大短大・教員・建築 3. 株式会社カヌカデザイン

係に大きな差異は見られない.しかしながら,CPT120 は早期に根固め部が破壊されたことにより支持力が低 下し,基準変位時(0.1D)の荷重はほかに比べ小さな値 を示した.根固め部強度が高い場合,根固め部破壊時 に極端な支持力低下を示し,基準変位時の支持力より も小さな値を示す可能性があることがわかった.

先端定着円盤を有する杭(P シリーズ)では,P58 (De=58mm)はCPT120と同程度の先端抵抗値である が,P68,P75と定着円盤径が大きくなものほど大きな 先端抵抗を示した.また,閉端杭シリーズと同様に根 固め部破壊時に支持力の低下を示したが,低下の割合 は閉端杭シリーズよりも小さかった.

3.2 根固め部破壊形状

Table 3, Figure6 に載荷試験後の根固め部の破壊形状 を示す. W/P=60%では明らかな割裂破壊を示している が, W/P が大きくなるほど鉛直方向のせん断破壊が目 立ち, パンチング破壊に近い破壊形状となっているこ とが確認できた. 先端定着円盤を有する杭では, P58, P68 は円盤直下部が抜き出るようなパンチング破壊を しているが, P75 では円盤下部の根固め部が引張破壊 する水平クラック破壊が生じていることが確認できた.

4 おわりに

本研究により、根固め部強度が小さくなるほどパン チング破壊に近い破壊形状を示すことが確認できた. 一方、根固め部強度が大きな場合は割裂破壊を生じ、 極端な支持力低下を示すことがわかった.また、先端 定着円盤を有する杭は、根固め部強度が小さな場合で も大きな支持力を発現し、根固め部破壊時の支持力低 下は小さく、主にパンチング破壊することを確認した. 参考文献

1. 佐藤, 鹿糠, 宮崎: セメントミルク鋼管杭における杭先端支持力 に関する研究, 日本建築学会技術報告集, Vol 22, No. 51, pp.101-106, 2016

2. 松本, 鹿糠, 田子, 宮崎, 佐藤: 埋め込み杭工法における杭の先 端支持力に関する基礎的研究: 低強度の根固め部を有する杭の模型 実験, 日本建築学会学術講演梗概集, 2017,9

Figure 4. Test results (Closed end pile)

Table 3. Test results

試験種類	記号	水石膏比 W/P(%)	先端面積 Ap(mm ²)	破壞時強度 (kN)	根固め部 破壊パターン
閉端杭 (CPT)	SP	_	1855	—	_
	CPT60	60	1855	16.39	割裂破壊
	CPT80	80	1855	12.55	割裂破壊
	CPT100	100	1855	10.64	割裂破壊
	CPT120	120	1855	4.93	割裂・パンチング破壊
定着円盤 (P)	P58	120	1855	3.99	パンチング破壊
	P68	120	2773	7.61	パンチング破壊
	P75	120	3710	9.69	水平クラック破壊

Figure 6. Failure - mode of root hardening part