燃料組成及び点火時期がノック強度に与える影響の調査 Investigation of Influence of Fuel Composition and Ignition Timing on Knock Intensity

○阿部陽介¹, 飯村匡哉¹, 五十嵐文太¹, 古荘拓磨², 竹田幸太郎², 飯島晃良³, 庄司秀夫³ *Yosuke Abe¹, Masaya Iimura¹, Ayata Igarasi¹, Takuma Furusyo², Kotaro Takeda², Akira Iijima³, Hideo Shoji³

Operating at high compression ratio and lean burn is necessary to improve thermal efficiency of internal combustion engine. However, knock becomes an issue when an engine is operated at a high compression ratio in the lean mixture region. In this study, knock intensity was investigated when changing fuel composition and ignition timing.

1. 序論

近年,地球温暖化や大気汚染等による環境問題が深 刻化している.そのため,内燃機関における更なる高 効率化が求められている.火花点火機関において熱効 率を向上させるためには,高圧縮比及び希薄燃焼下で の運転が必要となる.ただし,このような運転条件で は、ノッキングが発生することが課題になっている. よって,熱効率の向上には、ノッキング課題の解決が 急務である.そこで本研究では、ノック強度に着目し、 オクタン価、点火時期を変化させることで様々な運転 条件でノッキングを発生させ、ノック強度に影響を与 える因子について調査した.

2. 実験条件及び方法

本研究で用いたエンジン諸元及び実験条件を表 1 に示す.供試機関には、2 ストローク単気筒空冷式エ ンジンを用いた. 圧縮比は ε=13.1 に設定し、回転数 は 1200 rpm 一定の下で実験を行った.供試燃料には オクタン価標準燃料(PRF: Primary Reference Fuel)を 用い、オクタン価は 50 RON、90 RON に設定した. 本研究の主な測定項目においては、筒内圧力 (P[MPa])、 掃気温度 (Tsc [K])である.

Table 1 Specifications of test engine and test conditions

2-Stroke Air Cooled Single Cylinder Gasoline Engine	
Scaveing Type	Schnuerle
Bore \times Stroke	$72 \text{ mm} \times 60 \text{ mm}$
Displacement	244 cm^3
Throttle	WOT
Engine Speed	N = 1200 rpm
Compression Ratio	13.1 : 1
Exhaust Port Closing Timing	106 deg. ATDC
Equivalence Ratio	0.5
Test Fuel	PRF 90
	PRF 50
Ignition Timing	- 20 deg. ATDC
	- 40 deg. ATDC
	- 60 deg. ATDC

3. 実験結果及び考察

3.1 自着火評価に用いた特性値の定義

本研究では,燃焼挙動の評価のために以下を定義した.

Fig.1 Definition of Knock Intensity, P_{KI} [MPa]

<u>ノック強度, P_{KI}[MPa]</u> : 図 1 に示すように筒内圧力 を 4 kHz のハイパスフィルター処理しその最大振幅 をノック強度 P_{KI}[MPa] と定義した.

<u>ノック時期, (Knock Timing), θ_{AI} [deg.]</u> : 熱発生率が 最大値を示した時のクランク角度をノック時期と定義 した.

3.2 オクタン価と点火時期のノック強度への影響

掃気温度が一定の下で、オクタン価変化と点火時期 がノック強度に及ぼす影響を調査するために、掃気温 度 $T_{sc} = 338$ K, 燃料には PRF 50 と PRF 90 を用い、 当量比 $\phi = 0.5$, 点火時期を - 20 deg. ATDC, - 40 deg. ATDC, - 60 deg. ATDC と変化させた実験を行った. 図 2 に PRF 50 と PRF 90 における単一サイクルの指圧 波形を示す.

まず始めに, PRF 50 に注目すると, すべての点火時 期において強い圧力振動が発生していることがわかる. これは急峻な自着火が発生していることが原因と考え られる.特に点火時期が -20 deg. ATDC の時, 圧力振 動が最も大きくなった.このことから, 点火時期が - 20 deg. ATDC における燃焼では自着火による燃焼の割合 が増えていることを示している.続いて, PRF 90 につ

1:日大理工・学部・機械 2:日大理工・院(前)・機械 3:日大理工・教員・機械

いて考える.こちらも PRF 50 と同様, どの点火時期 においても圧力振動は発生している.しかし,その圧 力振動は微弱なものとなっている.このことから PRF 90 での燃焼における自着火は比較的緩やかであるこ とがわかった.以上より,オクタン価を高めることで 圧力振動が低減すること,及び圧力最大時期の遅角が できるということがわかった.さらにオクタン価と点 火時期がノック強度に及ぼす要因を調査するため,両 オクタン価の条件下での全サイクルからノック特性を 解析した結果を示す.

図 3, 図 4 に PRF 50 及び PRF 90 における各点火 時期条件でのノック時期とノック強度の関係をそれぞ れ示した.ここで,一つのプロットは T_{sc} = 323 ~ 353 K の 20 サイクル中の各サイクルを示している.

図 3, 図 4 より, 点火時期一定の条件において, ノ ック時期が進角するにつれてノック強度は上昇するこ とがわかる. その一方で, 点火時期を進角させるとノ ック時期の進角に伴いノック強度が低下することがわ かる. これは点火時期の進角により燃焼期間が長期化 し, 自着火時の未燃混合気の割合が減少したからだと 考えられる.

ここで,図 3,図 4 を比較すると,PRF 50 に対し て PRF 90 のノック強度は小さくなった.これはオク タン価の上昇により混合気に着火しにくくなり,自着 火が比較的緩慢化したからだと考えられる.また, PRF 50 と PRF 90 ではノック時期も異なる結果が得 られた.PRF 50 では TDC 以前で強い自着火が起きて いるのに対し,PRF 90 では TDC 周辺で強い自着火が 発生していることが分かる.このことから,オクタン 価の上昇により自着火がしにくくなり,全点火時期条 件において,ノック時期が TDC 付近へ向けて遅角し たと考えられる.

4. 結論

同一ノック時期の場合,点火時期を進角させること でノック強度が低下することが分かった.また,オク タン価を高めることでノック強度が低下した.よって, 点火時期を早めつつ,自着火時期を遅らせることがノ ック強度の低減に有効であると考えられる.

5. 参考文献

[1] 飯島晃良,吉田裕貴,林智敏,島田貴司,山田将徳, 田辺光昭,庄司秀夫:可視化エンジンを用いた SI 機関 におけるノッキング現象の研究,内燃機関シンポジウ ム講演論文集(2015) [2] 飯島晃良,竹田幸太郎,吉田裕貴,林智敏,田辺 光昭,庄司秀夫:末端ガス高速可視化観察によるノッ キング時の自着火挙動解析,自動車技術会秋季大会 学術講演会講演論文集(2016)

Fig. 3 Knock Intensity vs. Knock Timing on PRF 50

Fig. 4 Knock Intensity vs. Knock Timing on PRF 90