マイクロロボットのための電磁アクチュエータに用いるコイルの検討

Study of Coil Used for Electromagnetic Actuator for Microrobot

〇内海裕人¹, 河村彗史¹, 田中大介¹, 金子美泉², 齊藤健², 内木場文男² *Yuto Uchiumi¹, Satoshi Kawamura¹, Daisuke Tanaka¹, Minami Kaneko², Ken Saito², Fumio Uchikoba²

Abstract: In this paper, we propose a study of coil used for electromagnetic actuator for microrobot. We have been studying microrobot with shape memory alloy as actuator. However, since the shape memory alloy operates with heat, a thermal problem arises. Therefore, electromagnetic actuators using electromagnets were designed. For the electromagnet, a laminated coil using laminated ceramic technology is adopted. Analysis of the magnetic field and force of the coil was performed by ANSYS[®].

1. はじめに

昆虫は優れた機能を有している.構造面においては, 非常にコンパクトな体で安定した歩行が可能である. 制御面においては,非常に微小な脳でありながら,あ らゆる状況に適した行動を可能としている.近年,昆 虫の優れた機能を模倣したマイクロロボットが開発さ れている^{[1] [2]}.我々もまた昆虫の機能を模倣したマイ クロロボットを開発した^{[3] [4]}.開発したマイクロロボ ットはいずれも Mechanical Electro Micro Systems (MEMS)プロセスを用いたことでミリメータサイズと なっており,昆虫の6足歩行や,動物の4足歩行を模 倣したロボットである.

ロボットのアクチュエータには形状記憶合金(Shape Memory Alloy: SMA)を材料とした人工筋肉ワイヤ (Artificial Muscle Wire: AMW)を用いている.人工筋肉 ワイヤは発生力が大きく,構造自体が小型であるため マイクロロボットに適している.しかし,熱により動 作するために,熱が蓄積することで,長時間の動作が 困難になったり,動作不良を起こすことが問題となる.

そこで,熱を用いない新たなアクチュエータとして 電磁石を用いた電磁アクチュエータを考案する.電磁 石には積層セラミック技術を用いた積層コイルを採用 する.本研究では、マイクロロボットを駆動するため の電磁アクチュエータの設計をした.設計したアクチ ュエータは積層コイル、スプリング、永久磁石によっ て構成される.また設計したコイルと永久磁石におい て、ANSYS®を用いて磁場および力の解析を行った.

2. 電磁アクチュエータの原理

Figure 1 に電磁アクチュエータの原理を示す. Figure 1 では電磁石が上部で固定されており,永久磁石が脚 部機構に接続されている状態とする. Figure 1 において 電磁石のコイルに通電したとき,電磁石には磁極が現

1:日大理工・院(前)・精機 2:日大理工・教員・精機

れ,永久磁石のN極と電磁石のS極により,引力が生 じる.この引力で永久磁石が持ち上げられる.一方で 通電をOFFにしたときには,収縮したスプリングの弾 性力により永久磁石が元の位置に戻る.

Figure 1. Principle of electromagnetic actuator

3. 設計した電磁アクチュエータ

設計した電磁アクチュエータを Figure 2 に示す. Figure 2 における電磁石には積層コイルを用いる. 積層 コイルを覆うフレームパーツは MEMS プロセスで作 製する.また図中の脚部機構は,磁石に接続されてい るパーツを上に持ち上げ,元に戻すことで動作する. つまり,磁石の上下運動で脚部機構は動作する.持ち 上げるのに必要な力は 1.321 mN である.一方で,持ち 上げたあとに元に戻すのに必要な力は 1.048 mN であ る.

Figure 2. Designed electromagnetic actuator

4. コイルと永久磁石における磁場解析

本研究では設計した電磁アクチュエータにおいて, コイルと永久磁石の間に生じる磁東密度および磁石に 発生する合力を解析する.解析ソフトには ANSYS[®]を 用いた.解析の際のコイルと永久磁石のモデルは以下 に示す Figure 3 のようにした.またモデルの条件を Table 1 に示す.

Table 1. Model condition

Model condition		
Coil	Diameter [mm]	2.0
	Height [mm]	2.0
	Line width [mm]	0.3
	Resistivity of coil wire [Ωm]	1.63×10^{-8}
	Number of turns	25
	Current [A]	1.0
	Relative permeability of core	900
Magnet	Residual magnetic flux density [T]	12.5
	Coercive force [kA/m]	859
	Diameter [mm]	1.0
	Height [mm]	1.5

5. 結果

解析結果を Figure 4,5 に示す.コイルと磁石の間の 空間における磁束密度は最大で0.69793 T となった.ま た磁石に生じる力は鉛直上方向において最大で16.453 mN となった.脚部機構や磁石の重力を考慮した場合 でも、脚部機構が動作するのに必要な力を解析結果は 満たしている.

Figure 4. Analysis result of magnetic flux density between coil and magnet

Figure 5. Analysis result of the resultant force occurring in the magnet

6. まとめ

本研究ではマイクロロボットを駆動するための電磁 アクチュエータを設計した.また,設計したコイルと 磁石における磁場および力の解析を行った.今回の解 析結果では、必要な力を満たすことはできた.しかし、 コイルと磁石の間にスプリングが入ることを考慮する と、コイルと磁石の間の引力がスプリングの復元力よ りも大きくならなければならない。今後はより詳細な 条件下での解析を行うことで、アクチュエータの小型 化と大きな磁束密度や力を得ることとの兼ね合いを考 慮しながら、より正確な値に基づいた設計を進めてい く.そして、実際に積層セラミック技術でコイルを作 製し、磁束密度や力を測定する予定である.

7. 参考文献

[1]D. Vogtmann, R. S. Pierre, and S. Bergbreiter, I. Paprotny,
"A 25 mg magnetically actuated microrobot walking at 5 body length /sec," IEEE Conference Proceedings, Vol. 2017, pp. 179-182, Jan. 2017.

[2]M. Qi, Y. Zhu, Z. Liu, X. Zhang, X. Yan, and L. Lin, "A fast-moving electrostatic crawling insect," *IEEE Conference Proceedings*, Vol. 2017, pp. 761-764, 2017.

[3]K. Sugita, T. Tanaka, Y. Nakata, M. Takato, K. Saito, and F. Uchikoba, "Hexapod type MEMS microrobot equipped with an artificial neural networks IC", *International conference on artificial life and robotics*, pp. 225-228, 2017.
[4]Daisuke Tanaka, Yuto Uchiumi, Satoshi Kawamura, Minami Takato, Ken Saito, Fumio Uchikoba, "Four-Leg Independent Mechanism for MEMS Microrobot", Artificial Life and Robotics, pp. 380-384, 2017.