L-47

## 同軸プラズマガンによるアルミニウム薄膜の堆積について

Deposition of Al Thin Films Utilizing a Coaxial Plasma Gun

○八重樫 哉雅<sup>1</sup>, 中島 悟<sup>1</sup>, 橋口 舞<sup>2</sup>, 胡桃 聡<sup>3</sup>, 松田 健一<sup>3</sup>
鈴木 薫<sup>3</sup>, 石川 有宰<sup>4</sup>, 関口 純一<sup>5</sup>, 浅井 朋彦<sup>5</sup>
\*Saiga Yaegashi<sup>1</sup>, Satoru Nakajima<sup>1</sup>, Mai Hashiguchi<sup>2</sup>, Satoshi Kurumi<sup>3</sup>, Ken-ichi Matsuda<sup>3</sup>
Kaoru Suzuki<sup>3</sup>, Yusai Ishikawa<sup>4</sup>, Jun-ichi Sekiguchi<sup>5</sup>, Tomohiko Asai<sup>5</sup>

Abstract: In this study, we have developed a deposition apparatus utilizing coaxial-plasma gun (CPG) for generating plasmas of metallic materials. A CPG consists of concentric electrodes to which a helium gas was introduced. A homemade pulsed-current generator provided repeatedly pulses of large discharge current between electrodes. The optical emission spectra were observed in the generated plasma showed the existence of He I and Al II.

1. はじめに

廃熱等を電気に変換する熱電変換材料の一つとして, Fe<sub>2</sub>TiAl 系フルホイスラー合金が注目されている<sup>[1]</sup>. Fe<sub>2</sub>TiAl は有害元素を含まず,理論的に高い性能を有す ると考えられている.しかし,各元素配合量の僅かな 変化がゼーベック係数の大きさや符号に影響すること が分かっており,制御の困難さが,応用上の期待を低 下させている.そこで我々が着目したのが同軸プラズ マガン (Coaxial Plasma Gun, CPG)<sup>[2][3]</sup>を用いた堆積法 である.この手法は融点の異なる複数の金属を合金化 し,組成比を容易に制御できることが期待されている. 本稿では CPG を用いた堆積法により Al 微粒子を放出 させた時の基礎特性として CPG 電極間電圧,電流,瞬 時電力,および生成したプラズマの発光スペクトルを 評価した結果を報告する.

2. 実験方法







Figure 2. Schematic diagram of the pulsed-discharge circuit for CPG

Fig.1に CPG を用いた堆積法の概略図を示す. Fig.2 にパルス放電回路図を示す. CPG の電極は中心電極と 同心円筒状の外部電極で構成され、これらの電極ヘタ ーゲットとして Al を設置した. ターゲットの外寸は中 心電極側が Ø22×80 mm, 外部電極側が Ø34×20 mm である.チャンバー内の気圧は十分排気した後,動作 ガスとして He ガスを流入することにより 120 Pa に調 整した.パルス放電回路ではコンデンサが V<sub>c</sub>= 2.0 kV まで充電された後, イグナイトロンスイッチの始動に より充電電圧 V。が CPG 電極間に印加した. すると CPG 電極間に絶縁破壊が生じ, 電極に設置された Al ターゲ ットがスパッタされ、プラズマ微粒子が生成される. その際, 電極間に流れる放電電流 I とこれによって生 じた磁場 Bによるローレンツ力 ( $F = I \times B$ ) が働き, 発生したプラズマ微粒子は水平軸方向に電磁加速され 放出される. このときの CPG 電極間電圧は高電圧分圧 器(岩崎通信機株式会社, D-401)とオシロスコープ (Tektronix, TDS1012B), 電流はロゴスキーコイル式 電流プローブ (Pearson, 110A) を用いて測定し, 結果

1:日大理工・学部・電気 2:日大理工・院(前)・電気 3:日大理工・教員・電気 4:日大理工・院(前)・物理

5:日大理工・教員・物理

から電圧と電流の積より瞬時電力を算出した.またプ ラズマの発光スペクトルはターゲットから 100 mm 離 れた石英窓より CCD 分光器 (StellarNet 社製, EPP2000) を用いて測定した.

3. 実験結果



Figure 3. Waveforms of discharge voltage and current between electrodes of the CPG



Fig. 3 に放電時の CPG 電極間電圧および電流波形, Fig. 4 にこれより算出した瞬時電力を示す. 電極間に電 圧を印加後,瞬時に電圧波形は立ち上がり,そのピー ク値は 1.6 kV となる. その後約 6 µs の間に急激に降下 し,放電電流が流れ始める. 放電電流は減衰振動波形 を示しており,ピーク値は 25.6 kA,第1半波の半値幅 は 137.4 µs であった. 放電時の瞬時電力のピーク値は 15.7 MW であった. Fig. 5 に放電時のプラズマの発光スペクトルを示す. ターゲット材料である Al (II),動作ガスである He (I) の発光スペクトルが検出された.このことから Al のプ ラズマ微粒子がローレンツ力によって水平方向に放出 されていることが確認された.



Figure 5. The emission spectrum of discharge plasma

## 4. まとめ

ホイスラー合金生成の為, CPG による Al の堆積に ついて検討した. 放電時の電極間電圧のピーク値 1.6 kV,電流は減衰振動波形でピーク値 25.6 kA,第1半 波の半値幅 137.4 μs,瞬時電力のピーク値 15.7 MW、 が得られた.発光スペクトル測定ではターゲット材料 である Al (II),動作ガスである He (I)の発光スペクトル が検出された. このことから Al のプラズマ微粒子がロ ーレンツ力によって水平方向に放出されていることが 確認された.

## 5. 参考文献

[1] Y. Nishino et. al.: "Effect of off-stoichiometry on the transport properties of the Heusler-type Fe<sub>2</sub>VAl compound", Phy. Rev. B, Vol. 63, p. 233303, (2001).

[2] M. Takatsu et. al.: "Application of Coaxial Ion Gun for Film Generation and Ion Implantation", JPS Conf. Proc., Vol.1, p. 01586-1, (2014).

[3] S. Woodruff : "New Mode of Operating a Magnetized Coaxial Plasma Gun for Injecting Magnetic Helicity into a Spheromak", Phy. Rev. Let., Vol.90, No.9, p. 095001, (2003).