ダンベル型超音波複合振動源による金属接合 一接合時間を変化させた場合の接合強度-Metal welding by dumbbell-shaped complex vibration source -Weld strength as a function of weld time-

○玉田洋介¹,保坂英宣²,淺見拓哉³,三浦 光³ *Yosuke Tamada¹, Hidenobu Hosaka², Takuya Asami³, Hikaru Miura³

Abstract: Ultrasonic metal welding is a cold-welding method for dissimilar metals. In the method, it has been clarified that it is effective to use a vibration locus capable of applying a two-dimensional stress to the welding target. We have proposed ultrasonic welding with a planar vibration locus composed of longitudinal-torsional vibrations to which two-dimensional stress can be applied. We investigated ultrasonic metal welding of aluminum and copper plates using the complex vibration source capable of individually controlling longitudinal and torsional vibrations.

1. はじめに

電気自動車などにはリチウムイオン電池などの大容 量のバッテリーが必要とされている.バッテリーを大 容量化するには、バッテリーの電極部分(一般に正極 がアルミニウム、負極が銅)を正極負極交互に直列に 接続する必要がある.そのため、異種金属同士の接合 技術が必要となっている.超音波接合は熱を用いてい ないため、融点が異なる金属同士でも接合が可能であ る.また、超音波接合は二次元応力が得られる振動軌 跡を用いることが効果的であることが示されている^[1].

筆者らは二次元応力が印加可能な振動源として,縦 ーねじり複合振動から構成される面状振動軌跡による 超音波接合を提案している^[2].

本稿では、縦振動とねじり振動の個別の制御が可能 な複合振動源を用いて、アルミニウム板と銅板の超音 波接合の検討を行った.

2. 超音波複合振動源

Figure 1 は本稿で用いた複合振動源である. 複合振動 源は,直径比 1.5 の円柱形状のダンベル型ステップホ ーン(A2017)の両端に,27 kHz 用ボルト締めランジュバ ン型縦振動子,及び 19 kHz 用ボルト締めランジュバン 型ねじり振動子を接続した構造となっている. 複合振 動源は,共振周波数の異なる縦振動子とねじり振動子 を用いることで,各振動の波長を一致させている. 接 合対象に対して振動を加えるための接合チップは,ス テップホーンの中央に取り付けている.

接合チップは直径 4.2 mm であり, 接合対象に振動を 加えやすくするために, 接合チップ先端部にローレッ ト加工を施している.

3. 複合振動源の振動特性

複合振動源の共振特性を明らかにするために、アド ミタンスの測定を行った.測定は個々の振動子に対し て、駆動電圧を20Vms一定とし、駆動周波数を縦振動 子の場合は29-30kHz,ねじり振動子の場合は18-19kHz として行った.Figure2はその結果である.図は横軸に コンダクタンス、縦軸にサセプタンスをとっている. 図より、複合振動源は、縦振動の共振が29.3 kHz,ね

Figure 1. Ultrasonic complex vibration source.

Figure 2. Free admittance loops.

1:日大理工・院(前)・電気 2:日大理工・学部・電気 3:日大理工・教員・電気

じり振動の共振が 18.4 kHz にあることがわかった. その時の縦振動源,及びねじり振動源のコンダクタンス及び尖鋭度は,順に 27.7 mS, 12.5 mS,及び 1145,849 であった.

次に,複合振動源より得られる振動の軌跡を検討す るために,接合チップ先端における振動軌跡の測定を 行った.振動軌跡の測定は2台のレーザドップラ振動 計を用い,アドミタンスループから求めた共振周波数 にて行った.なお,駆動電圧は縦振動子が31Vms,ね じり振動子が8Vmsでそれぞれ一定である.Figure3は その結果である.図は横軸に縦振動振幅,縦軸にねじ り振動振幅をとっている.図より,縦振動子のみ,及 びねじり振動子のみ駆動の場合の振動軌跡は,それぞ れ直線の線状軌跡になっていることがわかる.一方, 両振動子を駆動した場合の振動軌跡は,個々に駆動し た場合の線状軌跡を組み合わせた,ほぼ正方形の面状 軌跡となることがわかった.

4. 接合時間を変化させた場合の接合強度

アルミニウム板(A1050, 長さ40 mm, 幅 20 mm, 厚 さ 0.5 mm)と銅板(C1100, 長さ40 mm, 幅 20 mm, 厚さ 2.0 mm)の接合において,各振動軌跡における接合強度 の検討を行った.接合は,接合時間を 0.2~1 s と変化さ せ,加圧を 500 N として,各振動の振動変位振幅を 10 µm_{p-p} とし, Figure 3 に示した振動軌跡を用いて各 10 回 ずつ測定した.接合後,接合した試料の接合強度を測 定した.なお,接合強度は JIS Z 3136 の方法に準拠し た引張圧縮試験機 (今田製作所, SDT-503NB)を用い, 引っ張りせん断試験を行って求めた.

Figure 4は、接合時間を変化させた場合の平均接合強 度の結果である.図は、横軸に接合時間、縦軸に接合 強度をとり、パラメータに振動軌跡を取っている. な お,図のエラーバーは偏差(±1g)を示している.図 中に示したように、ねじり振動軌跡を用いた接合の場 合, 0.2 s, 0.4 s では1回も接合されなかった. また、 0.6sでは10回中3回, 0.8sでは10回中8回しか接合 されなかった.そのため、これらの場合の接合強度は、 接合された試料の中で平均値,及び偏差を算出した. 図より、接合強度はいずれの接合時間においても、面 状振動軌跡,縦振動軌跡,ねじり振動軌跡の順に高い ことが分かった.また,面状振動軌跡を用いた接合は, 接合時間 0.6s から接合強度が飽和しており、縦振動軌 跡,及びねじり振動軌跡を用いた場合に比べて,短時 間で高強度に達することが分かった.更に、ねじり振 動軌跡を用いた接合は、接合時間 0.2, 0.4 s では接合が

- : Longitudinal vibration transducer only

Figure 4. Weld strength as a function of weld time.

行えていないが,縦振動軌跡と組み合わせた面状振動 軌跡にすることによって,接合強度を向上できること がわかった.

5. おわりに

本稿では、複合振動源を用いたアルミニウム板と 銅板の超音波金属接合の検討を行った.その結果、 面状振動軌跡を用いた場合の接合強度は各線状振動軌 跡を用いた場合の接合に比べて高くなり、より短時間 で良好な接合が行えることがわかった.

なお,本研究の一部は JSPS 科研費 15K21409 の助成 を受けたものである.

6. 参考文献

- T. Ueoka and J. Tsujino, Jpn. J. Appl. Phys., 41,3237 (2002).
- [2] T. Asami, Y. Tamada, Y. Higuchi, and H. Miura, Jpn. J. Appl. Phys., 56, 07JE02 (2017).