O-20

C14型 Laves 化合物 NdMn2の多結晶作製と物性評価

Polycrystal growth and physical property evaluation of C14-type Laves compound NdMn₂

O三河凌一朗¹,石井博隆²,武井優樹²,榎本蒼²,加藤勲也²,渡辺忠孝³ *R.Mikawa¹, H.Ishii², Y.Takei², S.Enomoto², H.Kato², T.Watanabe³

Abstract: C14-type Laves compounds AB_2 contain Kagome lattice of *B*-sites, which is expected to give rise to a variety of interesting quantum phenomena due to geometrical frustration. We synthesized polycrystals of a C14-type Laves compound NdMn₂ and investigated the structural, magnetic and electric properties.

1. はじめに

近年、磁性物理学の分野では幾何学的フラストレート 磁性体の研究が盛んに行われている.幾何学的フラスト レーションとは、磁性体において磁性イオン間に強い磁 気相互作用が働くにもかかわらず、結晶構造の幾何学的 制約によって磁気相転移が出来ない状況を指す.このよ うな幾何学的フラストレート磁性体では、非常に強いス ピン揺らぎが生じるので、新奇かつ多彩な量子現象と基 底状態が創出する.

Laves化合物はAB₂の組成からなる金属間化合物であり, A サイトとBサイトを占める原子の半径比が1.225:1に 近い場合に形成される. Laves化合物の結晶構造は,Cl4 型(MgZn₂型),Cl5型(MgCu₂型),C36型(MgNi₂型)の3 種類に分類することができ、それぞれが六方晶、立方晶、 二重六方晶の結晶構造を持っている.その中で,Bサイ トがカゴメ格子を基調とする結晶構造を持つCl4型 Laves化合物は、幾何学的フラストレーションを強く反映 した特異な状態が発現することが期待される.

C14型 Laves 化合物 NdMn₂は, Figure 1 に示すような六 方晶(空間群 *P63/mmc*)の化合物であり, Mn がカゴメ格子 の積層構造を形成している. この物質については, $T_N \sim$ 104 K で構造相転移を伴った反強磁性転移を示すとの報 告があるが [1], 詳しい物性はまだ研究されていない. そ こで我々は NdMn₂について, 遍歴フラストレート磁性と それに由来する新奇物性の探索を行っている. 今回は NdMn₂ の多結晶試料を作製し,物性評価を行ったので報 告する.

Figure 1. Crystal structure of C14-type Laves compound NdMn₂

2. 実験方法

NdMn2 の多結晶試料はアルゴン雰囲気中でのアーク溶 融法により作製した. 原材料には Nd インゴット(99.9%), Mn パウダー(99.99%)を使用した. 試料作製の手順として, まず化学量論比に従い Nd インゴットの質量を基準とし て Mn パウダーを秤量し, 4t で 40 分間の圧粉成形を行な った. 次に, この Mn の圧粉体と Nd インゴットをアーク 溶融して凝固させた.

作製した多結晶試料は,粉末 X 線回折(XRD)測定で結 晶構造評価を行い,電気抵抗率及び磁化率の温度依存性 を測定し物性評価を行った.

3. 実験結果

3-1. 粉末 X 線回折(XRD)測定

Figure 2に作製した NdMn₂多結晶の as-grown 試料にお ける粉末 X 線回折(XRD)測定の結果を示す. 主相として C14型 Laves 相が得られたが. 不純物相と Nd 単体のピー クが見られた.

Figure 2. Powder XRD patterns of polycrystalline NdMn₂

3-2. 磁化率測定

Figure 3 に作製した NdMn₂多結晶の as-grown 試料の H = 100 Oe での磁化率の温度依存性を示す. ゼロ磁場冷却 (Zero-Field Cooling: ZFC)と磁場中冷却(Field Cooling: FC) ともに~ 104 K で相転移と思われる異常が見られ,また~ 104 K 以下において ZFC と FC に履歴が生じた.

3-3.電気抵抗率測定

Figure 4 に作製した NdMn₂多結晶の as-grown 試料にお ける電気抵抗率の温度依存性を示す. 金属的振る舞いを 示しており,昇温時と降温時ともに~104 K で相転移と思 われる異常が見られた.

Figure 4. Temperature dependence of electrical resistivity in polycrystalline $NdMn_2$

4. まとめ

C14型 Laves 化合物 NdMn2の多結晶試料を作製した. 磁化率の温度依存性を測定したところ、~104 K で相転移 と思われる異常が見られ、~104 K 以下において ZFC と FC に履歴が見られた.また、電気抵抗率の温度依存性は 金属的振る舞いを示し、昇温時と降温時ともに~104 K で 相転移と思われる異常が見られた.当日の発表では、よ り純良な NdMn2 多結晶試料についての実験結果を報告す る予定である.

5. 参考文献

[1] N. H. Kim-Ngan et al., Physica B 160 388 (1990).