B-41

損傷スペクトルを用いた RC 造建物に対する損傷評価手法の精度向上に関する研究 (その1)崩壊形が異なる骨組モデルの構築

A Study on Accuracy Improvements of Damage Evaluation Method for R/C Buildings by Damage Spectrum (Part1) Structural Performance of Frame Models with Different Failure Mode

○伊藤綾哉¹, 市川大真², 田嶋和樹³, 長沼一洋³

*Ryoya Ito¹, Motochika Ichikawa², Kazuki Tajima³, Kazuhiro Naganuma³

Abstract: This study aims to establish a damage evaluation method for R/C buildings using damage spectrum. Damage index is defined according to damage category proposed by Park et al. However, the damage category needs further calibration. Therefore, a new damage category is constructed corresponding to damage index through analytical studies. In Part 1, frame models for different failure modes are constructed and structural performance is evaluated.

1. はじめに

国内における既存鉄筋コンクリート(以下, RC)造建 物の損傷評価手法は、耐震診断の考え方に基づいてい るため、地震動特性の影響が十分に考慮されていない. そこで、迅速かつ高精度な損傷評価手法の構築を目指 し」,とりわけ、損傷スペクトルを用いた損傷評価手 法の精度向上に関する検討を進めている.

本検討では, RC 造建物の損傷程度を表す Park らの 損傷カテゴリー2)に対して, 骨組の崩壊形の違いや入力 地震動の影響を考慮した新たな損傷カテゴリーの構築 を試みる.

2. 損傷スペクトルの概要および問題点

損傷スペクトルとは、建物を等価1質点系でモデル 化し, 弾性1次固有周期T(sec)と損傷指標DIの関係を 表したものである. 損傷指標 DI は Park らの損傷カテ ゴリー(Fig.1)と対応させることにより具体的な損傷状 態を評価する.筆者らは、地震動特性の影響を考慮し た損傷指標 DIdを提案している.以下に DId 式を示す.

$$DI_{d} = [(1 - \alpha_{2})(\mu - \mu_{e})/(\mu_{mon} - 1)] + \alpha_{2}[(E_{H,PHC} + E_{H,FHC})/(E_{Hmon} + E_{H,FHC})]^{1/2}$$
(1)

μ:変位塑性率,μ:降伏時変形に対する最大弾性変 形の比, µmon: 単調水平載荷時の終局塑性率, EHmon: 単調水平載荷時の履歴エネルギー吸収量, E_{H,PHC}: PHC に対応する地震時の履歴エネルギー吸収量, E_{H.FHC}: FHC に対応する地震時の履歴エネルギー吸収量, α_2 : 定数であり、詳細は参考文献[1]を参照されたい.

ここで、現状採用している損傷カテゴリーの問題点 として以下のことが挙げられる. ①Park らの損傷指標 DIPA により設定しているため、提案損傷指標 DId にお ける適用性が不明瞭である. ②検討した被災建物は 2 つの入力地震動に対するものであり、更なるキャリブ

Simulated Damage Index

このような背景において,本検討では解析的検討に 基づき,提案損傷指標 DL に対応する新たな損傷カテ ゴリーの提案を試みる.本報(その1)では、検討を進め ていくにあたり、実大 RC 造骨組の振動台実験を対象 として、代表的な RC 造骨組モデルを構築する.

3. 標準 RC 造骨組の構築

3.1 解析対象試験体の概要

科学技術庁・官民特定共同研究「強震動による RC 構造物の破壊に関する研究」³⁾の実大3層RC造骨組を 対象とした. 試験体は, 地震時に梁曲げ降伏先行の全

1:日大理工・学部・建築 2:日大理工・院(前)・建築 3:日大理工・教員・建築 体崩壊機構を形成し、その後十分な靭性を有するよう に RC 造建物の終局強度型耐震設計指針・同解説 ⁴に準 拠して設計した.本実験では、強震時における崩壊過 程を把握することを目的として、1 方向振動破壊実験 が行われた. Fig.2 に解析対象試験体を示す.試験体は 付加重量を均等に配置した無偏心モデルである.入力 地震波は八戸 EW 成分を拡幅したものが使用された.

3. 2 解析モデルの概要

解析には数値解析コード OpenSees を用いた. 解析モ デルは既往の研究¹⁾を参考に,柱はファイバー要素, 梁は両端塑性ヒンジ長さがファイバー要素で中間が弾 性体から構成される要素,基礎および柱梁接合部は剛 域,スラブは剛床仮定として,ファイバー部材が強度 上昇しないように梁の弾性体は軸方向力が十分小さい ものとした.

3.3 解析結果

Fig.3 に解析結果を示す.履歴性状は若干最大応答を 過小評価しているものの,全体的な傾向としては実験 結果と概ね良好に対応している.また,柱梁端部の主 筋降伏状況においては,主筋降伏順序が若干異なるも のの,両者ともに全体崩壊形の崩壊機構を示す結果と なった.このことから,解析結果は実験結果を良好に シミュレーションできたといえる.

4. 種々の崩壊形への拡張

本章では、2章で構築した骨組モデルに対して、RC 構造保有水平耐力計算規準(案)・同解説 ⁵における構造 特性係数 Ds の設定方法に着目し、3パターンの崩壊形 を有する骨組モデルに拡張する.

崩壊形の概要は, Case-1:全体崩壊形, Case-2:部分 崩壊形(2 層崩壊)および Case-3:部分崩壊形(1 層崩壊) としている.詳細な部材断面の諸元は Table 1 に示す通 りとなっている.

各骨組において,終局塑性率に到達するまで静的単 調載荷を実施した結果を Fig.4 に示す.崩壊層の最も多 い Case-1:全体崩壊形は,最大耐力が最も小さいもの の優れた変形性能を有している.一方,崩壊層の最も 少ない Case-3:部分崩壊形(1層崩壊)は,最大耐力は最 も大きいものの変形性能は Case-1 の 1/4 程度と,崩壊 形の違いにより異なる構造性能が確認された.

5. まとめ

本報(その1)では、実大3層RC造骨組の振動台実験 において解析モデルを構築し、2次設計における構造 特性係数Dsの設定方法に着目して、3パターンの崩壊 形に拡張した.その結果、崩壊形の違いによる各骨組 の異なる構造性能を把握した.

Table 1 Details of Members

次報(その2)では、構築した骨組モデルに対して入力 地震動をパラメータとした地震応答解析を実施し、そ

の結果から新たな損傷カテゴリーの構築を試みる. 【参考文献】

[1] 市川大真,田嶋和樹,長沼一洋:繰り返し載荷履歴 の影響を考慮した RC 造建物の地震損傷評価, コンク リート工学年次論文集, Vol.40, No.2, pp.763-768, 2018 [2] Park, Y. J., Ang, A.H. S.: Seismic Damage Analysis of Reinforced Concrete Buildings, Journal of Structural Engineering, ASCE, Vol.111, No.4, April, 1985.

[3] 小野口雅美ほか:実大3層鉄筋コンクリート造骨組 の振動台実験(その1~4),日本建築学会大会学術講 演梗概集,pp707-714,1995.8

[4] 日本建築学会:鉄筋コンクリート造建物の終局強度 型耐震設計指針・同解説, 1990.11

[5] 日本建築学会:鉄筋コンクリート構造保有水平耐力 計算規準(案)・同解説, 2016.4