簡易なベンダーエレメント試験による砂のせん断剛性の評価

Evaluation for Shear Modulus of Sand by Simplified Bender Element Test

〇小林亮太¹, 山田雅一², 道明裕毅², 實松俊明³, 太田宏³ *Ryota Kobayashi¹, Masaichi Yamada², Yuki Domyo², Toshiaki Sanematsu³, Hiroshi Ota³

Abstract: In a variety of stress state, the shear modulus of sand was estimated by simplified Bender element test using the Lissajous figures. In K_0 condition, the obtained shear modulus roughly corresponded to the past test results. Also even in the anisotropic condition other than the K_0 condition, it was confirmed that the obtained shear modulus roughly corresponded to the evaluation equation of the past by the resonance method test.

1. はじめに

室内で土の変形特性を求めるベンダーエレメント試験 (以下 BE 試験)は、非破壊試験であること、BE 自体が 小さいため比較的容易に他の試験機と併用できることか ら有用な試験法である.一方、地盤工学会による BE 試 験法の基準では、5 種類の周波数で、かつ、送信波と受信 波の初動の周期が等しくなる周波数で実施することが望 ましいとされている¹⁾.この送受信波が等しい周期を持 つような周波数は、対象となる試料や応力状態によって 異なり、特に、時々刻々と応力状態を変化させた状況で BE 試験を行う場合に、これらの条件を満足させることは 難しい。そこで、筆者らは、セメント安定処理土に対し て提案された、より簡易な送信周波数の同定法を用いた BE 試験によるせん断剛性の評価法²⁾を異方応力状態の砂 に適用することで、砂のせん断剛性を検討した。

2. 試験方法

異方応力状態におけるせん断剛性 G_B の評価法を検討 するために, Table 1 に示す条件で三軸試験を行った.各 試験ケースとも初期載荷として K_0 条件で目標となる有効 鉛直応力 σ' 、まで載荷を行い,その後, K_0 ,有効水平応力 σ'_h 一定,あるいは平均有効主応力 σ'_m 一定の条件で目標 となる有効鉛直応力 σ' 、まで除荷あるいは載荷を行った. なお, K_0 条件では2重セルで計測した側方ひずみが生じ ないように水平応力を制御している³.試料には豊浦砂を 用いており,Table 2 に物性値を示す.各供試体の初期相 対密度は50%程度を目標とした.BE 試験は三軸試験の載 荷・除荷中に実施しており,送信波はリサージュ図形に よって確認した送信波と受信波の周期が等しくなるとき の周波数を用いている.詳細は文献4)を参照されたい.

3. 試験結果

Figure 1 に各試験ケースで得られた有効鉛直応力 σ_v と

有効水平応力 σ_h の関係を示しており,初期載荷後に K_0 載荷(除荷)した結果を(a),初期載荷後に σ_h 一定,または σ_m 一定で σ_v を載荷(除荷)した結果を(b)に実線で示した. 同図には BE 試験によりせん断波速度 Vs を測定した応力 状態をプロットで併せて示している.同図より,初期載 荷時において K_0 が 0.4 程度の値を示していることが分か

Figure 1. Stress pass

1:日大理工・院(前)・建築 2:日大理工・教員・建築 3:鹿島技術研究所

4. せん断剛性 G_Bの評価

BE 試験によって得られたせん断波速度 Vs を用いて, せん断剛性 G_Bは(1)式により算出される.

 $G_B = \rho \cdot V S^2$ (kN/m²) (1) ここに、 ρ :土の湿潤密度 (g/cm³)、Vs:せん断波速度 (m/s) である.

異方応力状態における本試験法の妥当性を確認するために、土圧係数 K=0.5、 σ'_v =200kN/m² で行われた既往の BE 試験結果 ⁵と比較した. Figure 2 には、初期載荷中におけるせん断剛性 G_Bを平均有効主応力 σ'_m の影響を取り除くために $\sigma'_m^{0.44}$ で除した値と間隙比 e の関係を示す. 同図より、リサージュ図形を用いた本試験法で得られたせん断剛性 G_B と既往の試験結果が比較的よく対応していることから、異方応力状態において本試験法によるせん断剛性 G_B の評価方法の妥当性が概ね確認された.

Figure 3 には各試験ケースで得られたせん断剛性 G_B と 平均有効主応力 σ_m の関係を示している.供試体の鉛直方 向での圧縮を載荷,伸張を除荷としてそれぞれ示してい る.同図にはきれいな砂を対象とした共振法で得られた, せん断ひずみ γ が 10⁻⁵ レベルにおけるせん断剛性 G_I の評 価式 σ を, SI 単位に換算した(2)式を併せて示した.

 $G_I = 11090 \cdot F(e) \cdot \sigma'_m^{0.44}$ (kN/m²) (2) ここに、F(e):間隙比関数(=(2.17-e)²/(1+e)) である. な お、各図の縦軸はせん断剛性 G を間隙比関数で除してい る. Figure 3 より、載荷、除荷によらず BE 試験から得ら れたせん断剛性 G_B は(2)式よりやや低く評価されている ものの、概ね対応する結果が得られた. ただし、平均有 効主応力 σ'_m が低い試験結果においてはせん断剛性 G_Bが 低く評価される点もみられた. これは、拘束圧が低くな るに従ってせん断剛性 G に不連続性が生じ、拘束圧依存 性が異なることが指摘されていることから⁷,低拘束圧に よる影響が一因であると思われる.

5. おわりに

本報をまとめると下記の通りである.

- 1) 異方応力状態の砂においてもリサージュ図形を用い たベンダーエレメント試験を行うことで、せん断波速 度 Vs を簡易に測定することができた.
- 2) 異方応力状態で得られたせん断波速度 Vs から求めた せん断剛性 G_Bと,既往のせん断剛性の評価式は概ね対 応した.

参考文献

 1)地盤工学会:ベンダーエレメント法による土のせん断波速度 測定方法,新規規定地盤工学会基準・同解説(2013年度版),

JGS0544, 2014.

- 2) 山田雅一他:セメント安定処理粘土の初期せん断弾性係数の 評価,第12回地盤改良シンポジウム論文集, pp.117-122, 2016.
- 3)太田宏他:山留め壁に作用する土圧-変位関係の繰返し挙動 その1.三軸試験装置と繰返し載荷試験,日本建築学会大会 学術講演梗概集,B-1, pp.665-666, 2009.
- 4)小林亮太他:ベンダーエレメント試験による砂のせん断剛性の評価-その1 リサージュ図形を用いた試験法の検討-,日本建築学会大会学術講演梗概集,2018.
- 5)Yamashita, S. et al. : Interpretation of International parallel test on the measurement of G_{max} using bender elements, Soils and Foundations, Vol.49, No.4, pp.631-650, 2009.
- 6)Iwasaki, T. et al. : Effects of grain size and grading on dynamic shear moduli of sands, Soils and Foundations, Vol.17, No.3, pp.19-35, 1977.
- 7) 奥村哲夫他:低拘束圧下における砂質土の動的変形特性,土 木学会論文集,第364号,pp.67-76,1985.