鉄酸化物ナノ構造の作製

Fabrication of iron oxide nanostructures

○中谷健登¹, 阿久津里奈², 渡辺忠孝³, 高野良紀³, 高瀬浩一³ *K. Nakatani¹, R. Akutsu², T. Watanabe³, Y. Takano³, K. Takase³

Abstract : We have fabricated oxide iron nanowires which can be applied to cancer killing through heat generation by magnetic energy loss.

1. はじめに

これまでの癌治療は、手術、化学療法(抗ガン剤), 放射線療法が3本柱となっていた.しかし、手術は患 者へのダメージが大きく、化学療法や放射線療法も重 篤な副作用を引き起こすことがあり、治療における QOL (quality of life, 医療の質)を高める第4の治療 法の確立が期待されている.そこで、ガン細胞が正常 な細胞と比べて熱に弱い性質であることに着目して、 ガンを加温により死滅させる温熱療法(ハイパーサー ミア)が注目され、多くの研究機関によって研究され ている.

一般的に癌細胞は 42.5 ℃以上に温められると死に 始めることが知られている.人間の体全体をこのよう な高温にさらすことは不可能であるので,できるだけ 局所的な加熱が望まれる.これを実現するために,ナ ノ粒子の利用が考えられている.血管の内径は,毛細 血管の場合でも,せいぜい,数マイクロメートルであ り,ナノ粒子に比べると非常に大きい.このためナノ 粒子は,血流に乗せて,癌細胞まで安易に運ぶことが できる.さらに,もし,ナノ粒子が強磁性体であるな らば強磁性体のヒステリシス損失や磁気モーメント の緩和の遅れを利用して,体外からナノ粒子を加熱で き,これにより癌細胞だけを叩くことが可能となる.

そこで、本研究では、生体親和性が高い強磁性体で ある Fe₃O₄に注目し、多孔質材料である陽極酸化ポー ラスアルミナ(APA)をテンプレートとしたナノワイヤ ーを作製することを目的とする.

2. 実験

APA 作製の準備として,アルミニウム板をアセトンで超音波洗浄(脱脂処理),電解研磨溶液を用いて電解研磨処理を行う.電解研磨処理をしたアルミニウム基板を,シュウ酸(0.3 M),電圧 40 V の条件で 1st step

陽極酸化を 20 h 行う (Figure1 (a)). 1st step 陽極酸化に より出来た酸化膜をクロム酸リン酸混合溶液を用い てエッチングすると,表面に規則的な凹凸を有するア ルミニウムの表面が露出する (Figure1 (b)). 1st step 陽 極酸化と同じ条件で再度 3 h 陽極酸化を行うと,より 規則的なナノホールを有する酸化膜が生成される (Figure1 (c)). APA の底部にはバリア層があるため, 電圧降下処理を行いバリア層に亀裂を入れ (Figure1 (d)),リン酸溶液 (5wt%)を用いてポアワイトニング (PW)処理を行いバリア層を除去する (Figure1 (e)).そ の後作製した APA のナノホール内に電解メッキで鉄 酸化物の埋め込みを行う (Figure1 (f)). これまでのと ころ,メッキによる鉄の埋め込みに関しては報告はあ るもののかなり困難な技術のようである.今回,我々 は何度も試料作製に取り組んだので,本予稿ではその

Figure 1. Schematic diagram of each step of the iron oxyhydroxide nanowire

3. 結果

今回, 試料の PW 処理時間は 8 min, メッキ時間は 10 min とした. 同一条件で作製した 3 つの試料の断面

SEM 像を Figure2((a), (b), (c)), 正反射測定を Figure3 に示す. Figure2 の SEM 像からは, いずれの場合でも オキシ水酸化鉄の埋め込みは確認できなかった. 試料 の色もほぼ同じように見える.

正反射測定から,絶対値は異なるものの,スペクト ルの形状等はあまり変化していないことがわかる.

4. 考察

今回, オキシ水酸化鉄ナノワイヤーの作製を試みた. Figure 2 の SEM 像からは, オキシ水酸化鉄の埋め込み を確認することができないが, Figure4 を見るとオキ シ水酸化鉄の色を確認することができる. このことか ら, SEM 像では確認できないだけで他の場所にオキ シ水酸化鉄が埋め込まれている, またはオキシ水酸化 鉄が溶け込んでいて SEM 像では確認できないなどの ことが考えられる. 今後は, 今回作製した試料に熱処 埋を行い, Fe₃O₄ナノワイヤーの作製を目指す.

Figure 2. Cross-sectional views of SEM images of iron oxyhydroxide nanowires using APA . (Samples (a), (b), (c), embedded with iron oxyhydroxide under the same conditions)

5. 参考文献:「小林研究室」小林 猛 <<u>http://stu.isc.</u> chubu.ac.jp/bio/public/Bio Chem/labo/kobayashi lab/>

Figure 3. Measurement of specular reflection of iron oxyhydroxide nanowires using APA

Figure 4. Photograph of iron oxyhydroxide nanowire using APA.