H5-18

2 編波 SAR 画像を用いた平成 30 年北海道胆振東部地震による土砂災害領域の初期的な判読調査

Initial interpretation of sediment-related disaster area by the 2018 Hokkaido Iburi Eastern Earthquake using dual polarization of SAR images

○小澤 智弘¹, 羽柴 秀樹², 園部 雅史² Tomohiro Ozawa¹, Hashiba Hideki², Masashi Sonobe²

Abstract: A large earthquake occurred in Hokkaido Cholera district in September 2018. Landslide occurred extensively in Atsuma town due to this earthquake. In order to grasp a wide range of sediment-related disasters, SAR satellite images that are observable without being affected by the weather are effective. In this study, sediment-related disasters were investigated from the initial interpretation using Sentinel-1 satellite images. As a result, the difference in interpretation characteristics depending on the irradiation direction of the microwave wavelength and the direction of the slope were analyzed.

1. はじめに

平成30年9月に北海道胆振地方で震度6強の地震 が発生した.この地震の影響で北海道厚真町では広 範囲に渡り土砂崩れが発生した.これまでに,人的 や家屋の被害やインフラの被害が報告されている. このような広範囲にわたる土砂災害の被害把握には, 広範囲且つ面的に被害を把握可能な衛星画像による 被害情報の収集が有効である.また,長期的に悪天 候が続く場合や災害発生時が夜間の場合,災害状況 把握が困難な場合が多い.この場合,悪天候や夜間 の場合でも地表面の情報を取得可能である SAR 衛 星画像が有効である.

ここでは、観測後、準リアルタイムに観測データ を入手可能且つフリーで画像を取得可能な、Cバン ドの波長特性を有する Sentinel-1 衛星画像を用いた. 本衛星は2機体制で観測するため、即応フェーズで の被害の概要調査や復旧・復興フェーズでの定期的 且つ時系列なモニタリングを捉えることが可能であ り、防災分野の利用に期待できる¹⁾. Sentinel-1 衛星 の IW (Interferometric Wide Swath)モードでは VV、 VH 偏波の 2 偏波情報を取得しており、異なる地表 面反射特性を用いて 厚真町を対象に土砂崩れの初 期調査を行った. これらから SAR 衛星画像の特徴で ある幾何学的な判読困難箇所を明らかにし、土砂崩 れが判読可能である範囲と判読困難である範囲の比 較検討を行った.

- 2. 研究方法
- 3. 1 対象領域

対象領域は、平成 30 年 9 月 6 日に発生した平成 30 1:日大理工・院(前)・土木 2:日大理工・教員・土木 年北海道胆振地震で広範囲に大規模な土砂崩れが発生 した北海道厚真町周辺とした.災害の特徴を分類する ためにテストエリアとしてエリア 1,エリア 2 を設定 した.

2.2 使用データ

使用する SAR 衛星画像は,災害直後に観測された Sentinel-1 衛星とした. 観測日時は,2018 年9月6日5 時41 分である. 軌道方向は南行軌道であり,観測方向 は大凡西から東向きである.また,土砂崩れ領域の参 照用画像として光学衛星である Landsat-8 衛星画像か ら得られたパンシャープン画像を用いた. Landsat-8 の 撮影日は,2018 年9月 15 日である.

3 調査・解析手法

災害直後に Sentinel-1 衛星画像により観測された VV 偏波と VH偏波を重ね合わせた RGB カラー合成画像を 作成した.一般に VH 偏波は森林で反射強度が大きく, 土砂災害領域では小さくなり, VV 偏波は土砂災害領 域で反射強度が大きく,森林では小さくなる²⁾.その ため, RGB カラー合成画像を表示する際には,土砂災 害領域の判読を容易にするために,R(赤):VV 偏波, G(緑):VH 偏波,B(青):VV 偏波を割り当てるこ とで,森林を緑色,崩壊地を赤紫色とした.次に Landsat-8 衛星画像のパンシャープン画像から実際の土 砂災害領域を判読し,2 偏波 SAR 画像と比較を行う ことで下記に示す①判読可能範囲,②判読困難範囲, ③誤判読範囲の3つに分類した.

 判読可能範囲…Landsat-8 画像上の土砂災害範囲 と2偏波SAR画像の土砂災害領域を示す赤紫色の 範囲が明瞭に重なる範囲

- ② 判読困難範囲…Landsat-8 画像上の土砂災害範囲 と2偏波SAR画像の崩壊地を示す赤紫色の範囲が おおむね重なる範囲
- 3 誤判読範囲…Landsat-8 画像上で崩壊地を示さず、 2 偏波 SAR 画像の崩壊地を示す赤紫色の範囲がある.また、Landsat-8 画像上で崩壊地を示し、2 偏波 SAR 画像の崩壊地を示さず緑色の範囲と重なる範囲

4. 土砂災害判読結果について

エリア1の光学画像を Fig.1 に RGB カラー合成画像 を Fig.2 に示す. Fig.2 より、観測方向とほぼ平行する 東向き斜面において赤紫色に表示されており、判読可 能であることが認められた。一方、西向き斜面におい ては、黒く表示されていることから、判読が困難であ った。また, Fig.1 より確認可能である青枠内の土砂災 害範囲は, Fig.2 では,黒く表示されている範囲が多く 確認できる.これは,急峻な地形により,地表面にレ ーダーが届かないことを起因とするレーダーシャドウ による判読困難個所であると考察した.

Fig.1 Landslide disaster in area1 by Landsat-8

Fig.2 RGB composite Sentinel-1 image in area1

エリア2の光学画像を Fig.3 に RGB カラー合成画像を Fig.4 に示す. Fig3, 4 より赤枠内の南東方向の斜面と 南西方向の斜面において土砂災害が発生していること が確認できる.しかしながら, Fig.3 の土砂災害範囲と Fig.4 の土砂災害範囲の広さと分布の判読結果は明確 に異なるため、土砂範囲の推定は困難であることが認 められた.また、Fig.4の青枠内では、南西方向の斜面 において土砂災害の発生が確認できる.しかし、Fig.3 では、土砂災害が判読できないことから、青枠内は、 誤判読範囲であると考えられる.

Fig.3 Landslide disaster in area2 by Landsat-8

Fig.4 RGB composite Sentinel-1 image in area2

4. おわりに

地震発生による崩壊地を Sentinel-1 の RGB カラー画 像を用いて判読を行った.結果, SAR 衛星画像から照 射されるマイクロ波長の照射方向と斜面方向の特徴に より,判読結果が異なる傾向を把握した. 今後は,よ り正確な斜面方向と DEM による標高の特徴から判読 可能,不可能の傾向を把握する予定である.

ACKNOWLEDGEMENTS :

Sentinel-1 data courtesy of the Copernicus. Landsat-8/OLI image available from the U. S. Geological Survey.

5. 参考文献

(1)岩城英朗,鳴海智博,横島喬, C-band衛星 SAR による平成28年熊本地震における変状解析と構造物監視に向けた検討:土木学会論文集F3(地震工学), Vol.73, No.4, pp. I_1018-I_1023, 2017.(2)水野ら,国土技術政策総合研究所研究資料第791号,2 偏波 SAR 画像による大規模崩壊及び河道閉塞箇所の判読調査手法(案),

<http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0791pdf/ks079105.pdf >(閲 覧日:2018/09/10)