二点点火アシストが HCCI 燃焼に及ぼす影響 Effects of Two-point Ignition on HCCI Combustion

○吉田航二郎¹, 今井隆文¹, 星和寿¹, 阿部陽介², 飯村匡哉², 古荘拓磨², 飯島晃良³ *Kojiro Yoshida¹, Takafumi Imai¹, Kazutoshi Hoshi¹, Yosuke Abe, Masaya Iimura, Takuma Hurusho, Akira Iijima

In recent years, HCCI is noticed and investigated as internal combustion engine that can operate with high efficiency and low-pollution. It is seen as a problem because operation range is limited by combustion variation at low load condition. In this study, we investigated effects of two-point ignition on low-load operation characteristics of HCCI combustion by using visualization of flame formation and propagation and pressure analysis.

1. 序論

近年,高効率かつ低公害な燃焼を実現し得る内燃機 関として,予混合圧縮着火(Homogeneous Charge Compression Ignition 以下 HCCI)機関が注目され,広 く研究されている.過去の研究では,HCCI は低負荷 時の燃焼変動により運転範囲が制限される事が問題視 されている.本研究では,この課題において低負荷時 に二点点火が燃焼に与える影響について筒内の可視化 撮影や,指圧解析により調査した.

2. 実験方法

2.1. 機関の仕様及び実験条件

供試機関にはシュニーレ排気方式の2ストローク空 冷単気筒ガソリン機関を用いた.供試機関仕様を表1 に示す.有効圧縮比はピストンヘッドを分割し、スペ ーサーを間に挟み込む事により、本実験の条件である 圧縮比ε=11に設定した.実験条件を表2 に示す.シリ ンダ内を全ボア領域で可視化するため、シリンダヘッ ド上部に石英窓を設け、高速度カメラでの撮影を行っ た.なお、撮影速度は10000 fps (frames/sec)、解像度は 1024×1024 pixelsとした.点火時期は、3種類に制御し た.

2.2. 測定項目及び測定方法

図1 に実験概略図を示す. 主な測定項目はシリンダ 内圧力 (P [MPa]),掃気温度 (T_{sc} [K]), 排気温度 (T_{ex} [K]) である. 筒内圧力はシリンダヘッド側部に取付け た水晶圧力変換器を用いて測定した. 掃気温度は, 排 気ポート出口部にK 型シース熱電対を取り付け測定 した.

Table 1 Specifications of test engine

2-Stroke Air Cooled Single Cylinder Gasoline Engine				
Bore \times Stroke [mm]	72×60			
Displacement [cm ³]	244			
Engine Speed [rpm]	N= 1200			
Test Fuel	PRF (50RON)			
Effective Compression Ratio	ε= 11			
Equivarence Ratio	φ= 0.45			

Table 2 Experimental condition

Case No.		Case 1	Case 2	Case 3	Plug 2
Scavenging Temperature [H	<]	T _{sc} = 313~333			
SI Ignition Timing [deg.BTDC]	Plug 1	30	30	30	o the
	Plua 2		10	30	Plug 1

3. 実験結果及び考察

図2 に表2 で示したそれぞれの条件において, T_{sc} = 313 K における圧力履歴を示す. 30 deg.BTDC - 30 deg.BTDC の条件では失火サイクルが無く, COV がほ かの条件に比べ,低い値を示した.

図3 は表2 で示したそれぞれの条件で、 T_{sc} = 313 K における最高圧力の時期の分布を示したものである.

1: 日大理工・学部・機械 2: 日大理工・院・機械 3: 日大理工・教員・機械

30 deg.BTDC - 30 deg.BTDCの条件では最高圧力時期の 分布が比較的に小さく, 燃焼が安定していることが確 認できる. 一方, 30 deg.BTDC - 10 deg.BTDC の条件で は二点点火が燃焼を不安定にしていることが分かる. この両条件の燃焼の違いを次の図4 に示す.

図4 にT_{sc}=313 [K] における燃焼室内の可視化画像 並びにそれに対応する圧力履歴を示す. 30 deg.BTDC -10 deg.BTDC の条件では Ignition timing = 10 deg.BTDC であるプラグ2 付近の火炎核が自着火時期の直前まで に成長できていないとわかる.よってプラグ2付近の 火炎核がその時期までに成長できたサイクルでは高い 圧力を、成長できなかったサイクルでは失火を示し燃 焼が不安定になったと考えられる.

4. 結論

二点点火の時期は今回の条件では 30 deg.BTDC - 30 deg.BTDC の条件が良いと分かった. この条件は最高 圧力時期が安定していたが、30 deg.BTDC の条件の一 点点火に比べ上死点から、上死点後の方向にその時期 が遠かった.引き続き点火時期の組み合わせの影響を 評価する必要があると考える.

5. 参考文献

[1] 村中重夫 [他]:「新訂 自動車用ガソリンエンジン -研究開発技術者の基礎と実際-」,2011年

Pressure, P [MPa]

4.0

3.5

3.0

2.5

2.0 1.5

1.0

0.5

8.88 dea.

8.88 dea

0.0 L -10

TDC

5.04 deg.

0.72 deg.

Fig. 4 Visualization of flame formation and autoignition 814