プラズマアクチュエータによる噴流の制御 —逆流する誘起流れによる効果— Control for diffusion of a round jet by a plasma actuator -Effect of regurgitating induced flow -

○田丸正太郎1, 宮城徳誠2, 村松旦典3

*Shotaro Tamaru, Norimasa Miyagi, Akinori Muramatsu

A plasma actuator (PA) induces a flow of ambient gas by electrical hydrodynamic effects. The PA is applied to control jet diffusion. The controlled jets are classified to 3 kinds according to the duty ratio of the PA. Velocity in the controlled jets is measured using a hot-wire anemometer to examine the different flow patterns. As a result, the velocity fluctuation due to the induced flow by the plasma near the nozzle exit is the largest when the duty ratio is 50%. Also, the streamwise velocities on the jet centerline decrease overall due to the plasma actuator. Therefore, it is thought that diffusion of the jet flow was enhanced using the PA.

1.緒言

噴流の制御はバーナー火炎など様々な工業技術に使用さ れており、可燃ガスの混合を制御することで高性能化、高効 率化、小型化が可能である.そのため、噴流の拡散促進、ま たは抑制は重要な研究分野であると考えられる.また、最近 では DBD プラズマアクチュエータ(以下 PA)など新規の アクチュエータを用いた研究が注目されている^[1-2].さらに、 PA の駆動周期に対する作動時間割合を示す duty 比によっ て、3 つの噴出パターンが生じることが確認されている^[3].

本研究では,主流に対して逆流する誘起流れの影響を、熱線流速計を用いた誘起流れの測定,duty 比による噴出パタ ーンの定量評価を通して,誘起流れの噴流拡散に対する挙動の解明を目的とし実験を行った^[4].

2.実験装置及び実験方法

図 1(a)に本実験に用いた PA を, 同図(b)にノズルに装着した状態の PA を示す. 同図(c)に PA による流れの概念図を示す. 図 2 に実験装置の概要図を示す. 出口直径 d が 10 mmのノズルに同じく直径 10 mmの円筒型 PA をノズル出口に設置し,静止空気中に空気を鉛直上方に噴出させた.表1に実験条件を示す. Re は 1000 付近の値となるように噴出速度 U_0 を決定し, PA の入力電圧 V は 3 kV,入力周波数 f は 4.0 kHz,間欠駆動の周波数 f_a は,噴流の初期変動の周波数 b f 4.0 kHz,間欠駆動の周波数 f_a は,噴流の初期変動の周波数 b 75 Hz とした. また, PA 間欠駆動の duty 比による影響を観察するため duty 比を 0 ~ 100 %の範囲で設定した. duty = 0 % は PA が作動していない状態, duty = 50 % は PA が一周期(13.3 ms)当たり,50 % の時間(6.66 ms)作動している状態, duty = 100 % は連続駆動している状態である.

測定条件はノズル出口中心を原点とし、噴出方向(x 方 向) および半径方向(r 方向)の二次元座標とする. x/d =1.0 ~ 6.0の位置において、トラバース装置を用いてr 方向 に噴流の中心軸から外側に向け、熱線流速計プローブを 0.1 mm/s で移動しながら計測した.取得したデータから時間平 均速度 U と乱流強度 u'を算出し、いずれも噴出流速 U_0 で割 (a) Coaxial plasma actuator. (b) A nozzle fitted with PA.

(c) Schematic diagram of a coaxial plasma actuator.

Figure 1. A Coaxial plasma actuator.

り無次元化した. 噴出方向及び半径方向の座標はノズル出 口直径 d で無次元化した.

3.実験結果

3-1. 噴流中心軸上での時間平均速度及び乱流強度の分布

図3に軸中心の時間平均速度分布の値を示す.このとき, それぞれの平均速度 Uは噴出流速 V_0 で無次元化している. 図より全ての場合において $x/D_0 = 4.0$ 付近から中心速度が 減衰し始めることがわかる. PA が OFF (duty ratio = 0%)

3:日大理工・教員・航宇

 ^{1:}日大理工・学部・航宇
 2:日大理工 #= 航空

のときと PA が ON のときを比較すると, duty ratio = 100 % において中心速度は 5 %ほど増加し, duty 比が小さくなる につれて中心速度の増加の割合は減少することがわかる. これはせん断層による影響だと考えられる. また, duty ratio = 50 %のみ x/D_0 = 3.0 付近から速度の減少が顕著に見られ る.

図 4 に軸中心の乱流強度分布の値を示す. このとき,乱流強度 u'は噴出流速 V_0 で無次元化している. 図より,全ての duty 比において速度変動が急に増幅し, $x/D_0 = 4.0$ 付近から緩やかに減衰する変化が見られる. また, duty ratio = 50%のみピークへの到達位置がノズル出口に近く, duty ratio = 10,90%では下流で激しく変動していることがわかる. さらに,図の矢印で示されるように, duty ratio = 0,50,100%において $x/D_0 = 8.0 \sim 10.0$ でさらに傾きが緩やかになった後,再び減衰する傾向が見られる. これらのことからパターンというには差異が小さいが,duty 比ごとに変化に傾向があると考えられる.

3-2. 速度変動の波形

図 5 に速度変動の波形を示す. ここではせん断層である $r/D_0 = 0.4$ を取り扱った。図より duty ratio = 0%のときの 振幅は 0.2 ほどである.次に duty ratio = 10%のときの振幅 はとても小さな変動となり, duty ratio = 0%の振幅を打ち消 したと考えられる. duty ratio = 50%のときの振幅は約 0.2 と なり,周期的にきれいな三角波のような変動となる. duty ratio = 90%のときの振幅は 0.2 ~ 0.4 の間で変化する波形 となる.

4.結論

- (1)ノズル出口付近でのプラズマによる誘起流れによる変動はduty比が50%の場合が一番大きくなる.
- (2)変化のパターンとしてduty比が10 %と90%は周期性が不 安定であり、duty比が50%のときは周期的である.

5.参考文献

- 西田浩之ら, DBD プラズマアクチュエータの作動原理 と基本特性, J. Plasma Fusion Res. Vol.91, No.10 (2015)651-656.
- [2] 瀬川武彦ら、プラズマアクチュエータの産業応用、J.
 Plasma Fusion Res. Vol.91, No.10 (2015)665-670.
- [3] 宮城徳誠ら,同軸型 DBD プラズマアクチュエータに よる円形噴流拡散制御(CO₂ ガスへの適用),日本機械
 学会年次大会,S0510504 (2014).
- [4] 宮城徳誠ら,同軸型 DBD プラズマアクチュエータに よる円形噴流拡散制御(誘起流れの向きによる噴流境 界層不安定性)日本機械学会年次大会,S0520205 (2018).

Table.1 Experimental conditions.	
Jet fluid	Air
Nozzle diameter D_0	10 mm
Issuing velocity V ₀	1.54 m/s
Flow rate Q	7.4 L/min
Reynolds number Re	1024
Drive frequency f_d	75 Hz
Input voltage V_{P-P}	3.0 kV
Input frequency f	4.0 kHz
Sampling frequency f_s	10.0 kHz
Duty ratio	0, 10, 50, 90, 100 %

Figure 3. Mean velocities on the centerline

Figure 4. Turbulent Intensity on the centerline.

Figure 5. Velocity fluctuations($x/D_0 = 1.5$, $r/D_0 = 0.4$).