K3-54

デルタタブによる噴流初期領域の速度と渦度場の変化

Measurement of Velocity and Vorticity Fields in the Initial Region of Round Jet Using Delta Tabs

○谷田部周¹, 戸井健夫², 村松旦典³ *Shu Yatabe¹, Takeo Toi², Akinori Muramatsu³

Tabs are attached on nozzle exit to control vortex structure in a round jet. The shape of the used tab is isosceles triangle. It is found that the delta tabs delay the formation of vortex rings.

1. 緒言

噴流は流体力学における基本的な流れのひとつであ り,自然現象や工業分野で多く見られる. 噴流中の渦 構造を何らかの手法を用いて操作することにより噴流 の混合・拡散に係る空間的な発達過程を制御すること が出来る. Zaman^[1]は4個のデルタタブを出口直後に配 置した際, 噴流拡散が促進することを示した. 一昨年, 柳^[2]はタブの形状,大きさ,配置方法を変化させ噴流 の可視化実験を行った.その結果,デルタタブの場合 が縦渦を作る効果に優れていること、また縦渦と渦輪 が干渉し、3次元的な流れ場になることも示した. 昨 年,黒木^[3]は柳の実験結果^[2]をもとにノズル出口に1個 または2個のデルタタブを取り付けた場合について, 瞬時・多点の速度情報を抽出することが出来る PIV に よる実験を行い, 噴流中の速度場や渦構造について調 べた. タブによって剪断層のロールアップを押さえ噴 流の空間発達が遅れるというZaman の結果^[1]とは逆の 結果が得られた. ここでは、昨年よりタブの設置数を 増やしたノズルを用いて PIV 計測を行い、昨年の実験 結果と速度場、渦度場を比較し、タブによる噴流の制 御効果を調べることを目的としている.

2. 実験装置及び方法

図1に使用したノズル出口の形状を示す.ノズルは 出口直径 D_0 =12 mm, 縮流比が 30の円形ノズルである. なお,タブの配置場所はノズル出口直後の内側に設置 する.噴流のレイノルズ数 Reは 2000で実験を行い, タブの形は直角二等辺三角形で,厚さは 5 mm,突き出 し長さは 2.4 mm(ノズル出口直径の 20%),タブの個 数は黒木^[3]が測定を行った 2 個に加えて 3 個の場合の 実験を行った.ここでの Reはノズル出口中心上での噴 出速度 U_{CO} ,ノズルの出口直径 D_0 ,空気の動粘性係数 vによって決まる値である. Re = 2000のときの噴出速 度 U_{CO} は 2.58 m/s となる.

図2にPIVによる測定のための実験装置の概略図を 示す. PIVにより噴流の速度場を計測するためには,

Figure 2. Experimental apparatus for PIV measurment

噴流だけでなく、周囲流体にもマーカーとなる粒子を入れる必要があるため、アクリル製のダクトでノズルを囲んでいる.マーカー粒子はFog Generator で生成した粒子を使用している.ダブルパルスレーザーを光源として、シンリドリカルレンズで作成した厚さ約1mmのレーザーシートが噴流中心軸を通るようにアクリルダクトの隙間から入射し、噴流の流れ方向の断面の速度場を計測する.レーザーの出力は65×2 mJで2つのパルス間隔は180 µs である.可視化した噴流断面は、105 mmのレンズ AF Micro-Nikkor 105 mm f/2.8D を付けF値を2.8 に設定し、CCDカメラ RM-4200-CL を用いて記録する.CCDカメラの解像度は2048×2048 pixelである.撮影範囲は主流方向で36×36 mm とした.カメラとレーザーを同期する装置にはタイマーボックスを使用している.これらのシステムのセットアップか

1:日大理工・学部・航宇 2:日大理工・院(前)・航宇 3:日大理工・教員・航宇

ら結果の出力までを行うソフトウェアは Dynamic Studio を使用している.

3. 実験結果

PIV による計測を行った速度場と渦度場の結果を、 図 3 には $x/D_0 = 0.1 \sim 3(1.2 \text{ mm} \sim 36 \text{ mm})$,図 4 には x/D_0 = 3 ~ 6 (36 mm ~ 72 mm)の測定範囲について示す.

図 3 より,速度場はタブなしの場合と比較して section 1,3 tabs 共に速い速度場となった.これは内部 に設置されているデルタタブが障害物となり,縮流効 果によって速度が増速しているためである.また,噴 流の幅は3 tabs が2 tabs の section1 よりも太く, section2 より細くなった. 渦度場はタブなしでは渦輪が確認さ れたが, section 1, section 2,3 tabs の場合は渦輪を確 認することが出来なかった.

図4より,速度場はタブの数が増えると中心流速の 減衰が少なくなることが分かる. 渦度場はタブなしの 場合と section1 を比較すると,渦輪が形成されるのが 遅れていることから,タブを付けると渦輪の形成が下 流に遅れることが分かる.また,タブなしの場合と 2 tabs の section1, section2 を比較すると section1 では渦 が外側に広がるのに対し, section2 では渦が内側に入り 込んでいることが分かる. section1, section2 と 3 tabs を比較してみると,タブが設置されている右側では,3 tabs の場合渦輪が発生せずタブに挟まれた左側では section1, section2 より大きく遅れて渦輪が形成され, 渦が section2 の様に内側に入り込んでいることが確認 できる.

50 枚の速度ベクトル図から得られたデータから、半 径方向の平均速度分布を求めたものを図 5 に示す.3 tabs について注目すると、 $x/D_0 = 3$ まででは左右対称 な速度分布であったが、 $x/D_0 = 5$ 以降、右側と比較し て左側の速度が徐々に急勾配になることが分かる.

4. 今後の予定

これまでの実験は全て鉛直方向から計測を行ってきた. 今後は水平方向からの PIV 撮影を行うと同時に可 視化撮影をし,タブによる縦渦と渦輪の変化について 観察をしていきたい.

5. 参考文献

[1] Zaman, K.B.M.Q.: Control of an Axisymmetric Jet Using Vortex Generators, Physics of Fluids, Vol.6, pp778-793, 1994.

[2] 柳滉一,ノズル出口に取り付けた突起による噴流初 期領域の渦構造の操作,平成28年度日本大学理工学部 航空宇宙工学科卒業論文,2016.

Figure 3. Velocity and vorticity fields $(x/D_0 = 0.1 \sim 3)$

Figure 4. Velocity and vorticity fields $(x/D_0 = 3 \sim 6)$

Figure 5. Mean velocity profiles

[3] 黒木和音,タブを付けた円形噴流初期領域の速度と 渦度場の PIV による測定,平成 29 年度日本大学理工学 部航空宇宙工学科卒業論文, 2017.