実大折返しブレースの終局状態に関する研究 (その1 ブレース全体の変形性能に関する検討)

Study on the Ultimate Condition of the Full-Scale Folded-Brace

Part1 Study on Deformation Performance of the Entire Brace

○菊地謙太1,波田雅也2,北澤龍太郎3,竹内健一2,村井克綺2,北嶋圭二4,中西三和4,安達洋5 * Kenta Kikuchi¹, Masaya Hada², Ryutaro Kitazawa³, Kenichi Takeuchi², Katsuki Murai², Keiji Kitajima⁴, Mitsukazu Nakanishi⁴, Hiromi Adachi⁵

Abstract: In this study, the deformation performance was examined for the full-scale folded brace used in previous experiments. In this paper, we examined the deformation performance of the entire folded brace.

1. はじめに

折返しブレースは、径の異なる3本の鋼材(芯材、中鋼 管,外鋼管)を一筆書きの要領で折り返し接合し,部材長 さを 2.5 倍程度に長くしたブレース材である(Fig.1)^[1]. 軸降 伏変位が増大することで, 層間変形角 R=1/200rad 程度ま で降伏しない(Fig.2). さらに、芯材(圧縮材)の横たわみを 中鋼管(引張材)が拘束することで全体座屈が生じず,引張 耐力と同等の圧縮耐力を発揮するため、部材種別 BA の耐 震ブレースとして評定を取得している(Fig.3). これらの特 長は,既往の研究により実験的および理論的に明確となっ ている[2]. また、これまで実施した実大規模の構造実験よ り、 折返しブレースは、 座屈拘束効果により全体座屈が生 じないため、最終的な変形性能の限界は芯材の局部座屈 (板要素の座屈)で決定することが報告されている[2-{5].

本研究では,正負交番に繰り返し軸変形を受ける折返し ブレースの変形性能を評価する指標として塑性率 μ と平 均累積塑性変形倍率前6に着目し、既往の研究12-15で得られ た実大実験結果の変形性能について検討する.本報(その 1)では、折返しブレース全体の変形性能について示す.

2. 実大実験の概要と結果

断面形状

試

実験概要 検討対象の試験体諸元を Table1 に, 2.1 載荷スケジュールを Table2 に示す. 検討対象は, 実大の 折返しブレース計8体である.いずれも降伏軸力N_vが芯 材断面で決定し,軸降伏変位δ,が芯材単体の在来ブレース に比べて1.9~2.6 倍に増大するように設計されている.

Table1

鋼管,外鋼管)の断面特性

Specimen Specifications

また,芯材の断面形状はH形鋼(4体),角形鋼管(1体),円 形鋼管(3体)と様々で,部材長さ,載荷スケジュールも各々 異なっている.ただし、実験方法は共通であり、架構に組 込まれたブレースの応力状態を再現するため、Fig.4 のよ うに部材を斜めに設置した状態で、折返しブレース全体の 軸降伏変位 δ_ν(塑性率 μ=1.0)を基準とした変位制御で正負 交番に載荷している.

2.2 折返しブレース全体の履歴曲線 折返しブレ ース全体の軸力 N-軸変位δ関係(履歴曲線)を Fig.5 に示 す. 図中には、参考値として Table1 に示した折返しブ

驶 体 No	鋼材名	H−b×d×t _f ×t _w □−b×d×t,×t	鋼種	細長 比 λ	幅厚比 ^強 (径厚比) b/t N/i	強度 F	(0.2%オフセッ フランジ ウ	ト耐力) リェフ [*]	キロ キロ Ny	作 K	長さ し	軸刀 N _v	変位 δ _v	K	^{軸 解 (大} 変位 増大率	考 文	試験体No (断面形状)		< <p><共通事項> ・部材を斜めに設置した状態で載荷 ・正負交番載荷 ・実験値の塑性率 μ=1.0を基準とした変位</p>
		O-b×t				$\rm N/mm^2$	N/mm²		kN	kN/mm	mm	kN	mm	kN/mm		献			
1	芯材	H-175×175×11.0×7.5	SN400B	89	8.0	235	308	335	1, 583	339	3, 870			7 125	2.6	2)			
	中鋼管	□-197×191×6.0×9.0	SM490A	54	21.2	325	398		2, 223	382		1, 583	12.7				No. 1	(H)	µ=1.0, 1.5, 2.0, 3.0, 4.0を各2サイウル
	外鋼菅	□-213×213×9.0×6.0		48	23.7	325	398		2, 457	407							No. 2	(H)	µ=101520を冬2₩√カル
2	芯材	H-125×125×9.0×6.5	SN400B	108	6.9	235	278	278	828	215	3, 373					2)			$\Rightarrow \mu = 2.5 \pm 4 \pm 7 = 2.0 \pm 12777$
	中鋼管	□-150×150×9.0	BCR295	60	16.7	295	416		1,996	359		828	9.1	91	2.3		No. 3-1	(H)	μ=1.0, 1.5, 2.0, 2.5, 3.0, 3.5を各25
	外鋼菅	□-175×175×6.0		49	29.2	295	348		1,368	284									
3-1, 2	芯材	H-150 × 150 × 10.0 × 7.0	SN400B	260	7.5	235	300	306	1, 183	90	9, 800				2. 1	3)	No. 3-2 (H)	(H)	μ=1.0, 1.5, 2.0, 3.5を各2サイクル
	中鋼管	□-175×175×9.0	BCR295	147	19.4	295	398		2,267	132		1, 183 2	28.4	42				(11)	
	外鋼菅	□-250×250×6.0		101	41.7	295	377		3, 165	190								(□)	μ=1.0, 1.5, 2.0, 2.5を各2サイクル
4	芯材	□-150×150×6.0	BCR295	168	25.0	295	413		1,377	76	9, 800	1, 377 3		38	1.9	4)	No. 5-1 (→ μ - 3. 0 2 1 9 1 7 ル
	中鋼管	□-175×175×9.0		147	19.4	295	391		2, 229	132			35.8					(<mark>O</mark>)	μ=1.0を2サイクル⇒μ=2.0を/サイクル ⇒7サイクル目圧縮側で押し切り
	外鋼菅	□-250×250×9.0		101	27.8	295	359		3,012	191								u=10152025を各2#4/hu	
5-1~3	芯材	O-190.7 × 5.3	STKN490B	92	(36.1)	325	476		1, 471	121		1, 471	24. 7	60	2.0	5)	No. 5-2	(<mark>O</mark>)	⇒ μ=3.0を1サイクル
	中鋼管	O-216.3 × 8.2	STK490	82	(26.4)	325	471		2, 527	215	6, 001						No. 5-3	(0)	µ=1.0を各2サイクル⇒µ=2.5を10サイクル
	外鋼菅	O-244.5 × 9.0	SM490A	72	(27.2)	325	394		2, 624	260								(0)	

1:日大理工・院(前)・海建 2:青木あすなろ建設(株) 3:日大理工・海建 4:日大理工・教員・海建 5:日大・名誉教授

レース全体の計算値を用いた荷重一変位関係を赤線で示 し、降伏点(N_y、δ_y)を□印で示している.また、軸変位δ から換算した層間変形角 R(=(δ/cosθ)/H)も併記している. まず、Fig.5(a)の試験体 No.1 より、軸剛性の実験値は計算 値(鋼材 3 本の軸剛性を直列につないで算出した値)とほ ぼ一致し、引張・圧縮とも R=1/200rad 程度で芯材が軸降 伏していることがわかる.その後、R=1/50rad 程度まで安 定した紡錘形の履歴を描き、最終的には芯材局部座屈が 発生して耐力低下が生じ、実験を終了している.これら 結果は、Fig.5(b)~(h)に示す他の試験体も同様であり、い ずれも R=1/200rad 程度で軸降伏して紡錘形の履歴を描い た後、変形性能の限界が芯材の局部座屈によって決定し た.なお、No.2のみ、限界点に至る前に高力ボルト摩擦 接合部に滑りが生じたところで実験終了した.

3. 折返しブレース全体の変形性能

3.1 最大塑性率 μ と平均累積塑性変形倍率 η

繰り返し正負交番に軸変形を経験した折返しブレー スの変形性能を検討するため、最大耐力の 95%低下時 を変形性能の限界時回と定義し、Fig.5 の履歴曲線上に 限界時を●印で、限界時までに経験した圧縮側のピー ク変位(δ_{max})時を◆印で示している.以下では、変形性 能の指標として、限界時までの最大塑性率 μ および平 均累積塑性変形倍率 $\bar{\eta}$ について検討する.最大塑性率 μ および平均累積塑性変形倍率 $\bar{\eta}$ の算出方法を Fig.6 に示 す.最大塑性率 μ は、式(1)のようにピーク変位 δ_{max} を 軸降伏変位 δ_y で除して算出する.また、平均累積塑性 変形倍率 $\bar{\eta}$ は、式(2)のように累積エネルギー吸収量 W (履歴面積)の 1/2(正荷重片側に換算)を、降伏軸力 N_y と軸降伏変位 δ_y で除して無次元化した値とする.

3.2 $\mu \ge \eta \circ \eta$ の算出結果 ブレース全体の最大塑性率 $\mu \ge \Psi$ 均累積塑性変形倍率 $\eta \circ 0$ 一覧を Table3 に、 μ -1 $\ge \eta \circ$ 相関図⁶を Fig.7 に示す. Fig.7 の凡例は、Table3 中の試験 体 No 欄の括弧書きの断面形状と対応している. 図表より、 ブレース全体の最大塑性率 μ は 2.2-4.6、累積塑性変形倍 率 η は 10-89 の範囲であった. 部材長さや載荷スケジュー ルが異なるため直接比較できないが、芯材 H 形鋼タイプ の $\mu < \eta$ が大きく、円形鋼管、角形鋼管の順で小さい傾向 があった. また、Fig.7 中の右上りの直線は、 $\eta \ge \mu$ -1 を関 係づける係数 n^{6} で、 μ 相当の変形での定常 μ - π の繰り 返し回数の 2 倍の値を表している(n=2 で 1 μ - π). 各試 験体の係数 n は 3~37 の範囲であり、折返しブレース全体 では最大塑性率時の振幅で 1.5~18.5 μ - π 相当の繰り返 し変形性能を有していることがわかった.

4. まとめ

本報(その1)では,既往の実大実験結果を用いて折返 しブレース全体の変形性能について検討した.

