実大折返しブレースの終局状態に関する研究 (その2 芯材に局部座屈が発生する変形レベルの検討)

Study on the Ultimate Condition of the Full-Scale Folded-Brace

Part2 Study of Deformation Level of Local Buckling Occurs on the Core Material

○波田雅也², 菊地謙太¹, 北澤龍太郎³, 竹内健一², 村井克綺², 北嶋圭二⁴, 中西三和⁴, 安達洋⁵ * Masaya Hada², Kenta Kikuchi¹, Ryutaro Kitazawa³, Kenichi Takeuchi², Katsuki Murai², Keiji Kitajima⁴, Mitsukazu Nakanishi⁴, Hiromi Adachi⁵

Abstract: In this study, the deformation performance was examined for the full-scale folded brace used in previous experiments. In this paper, we examined the deformation level at which local buckling occurs in the core of the folded brace.

1. はじめに

折返しブレースは、中鋼管および外鋼管が弾性を保持し、また軸降伏する芯材は中鋼管により全体座屈が 拘束されるため、変形性能の限界が芯材の局部座屈で 決定する^[1]. そこで本報(その2)では、芯材部分の変形 性能について検討し、さらに、芯材に局部座屈が発生 する変形レベルを評価する.

2. 芯材部分の履歴曲線の抽出

折返しブレースの芯材部分の変形性能について検討 するため、折返しブレース全体の履歴曲線から芯材部 分の履歴曲線を抽出する.芯材の軸力はブレース全体 の軸力と同一であり、芯材の軸変位はブレース全体 の軸方と同一であり、芯材の軸変位はブレース全体の 軸変位から中鋼管と外鋼管の弾性軸変位(軸力 N を 中・外鋼管各々の軸剛性 K で除して算出)を差し引くこ とで抽出した.前報(その1)で示した試験体 8 体につい て、抽出した芯材部分の履歴曲線を Fig.1 に示す. Fig.1 中には、荷重-変位関係の計算値を赤線で示し、降伏 点(±δy, ±Ny)を□印で示している.また図中には前報(そ の1)で示したブレース全体の限界時と同じステップを ●印で、圧縮側のピーク変位時と同じステップを◆印 で示している.

3. 芯材部分の変形性能

Fig.1 の履歴曲線から算出した芯材部分の片振幅塑 性率_芯 μ と平均累積塑性変形倍率_志 η を Table1 に示す. Table1 中には前報(その1)で示した折返しブレース全体 の μ および η との比率も併記している.

Table 1 List of half Amplitude Plastic Modulus Core μ and Average Cumulative Plastic Deformation Magnification Core $\bar{\eta}$

試験体No (断面形状)			片振幅塑性率			累積塑性	平均累積塑性変形倍率		
		ピーク 変位 (mm)	芯材 部分	ブレース 全体	比率	エネルギー 吸収量 (kN・m)	芯材 部分	ブレース 全体	比率
		${}_{\varpi}\delta_{max}$	äμ	μ	_芯 μ/μ	W	$z\bar{\eta}$	$\bar{\eta}$	$\pm \bar{\eta}/\bar{\eta}$
No. 1	(H)	-44	9.5	4.2	2.3	1, 087	74	27	2.7
No. 2	(H)	-23	6.0	3.4	1.8	1, 345	211	89	2.4
No. 3-1	(H)	-77	5.8	3. 7	1.6	2, 551	81	38	2. 1
No. 3-2	(H)	-85	6.4	3. 7	1.7	1, 058	34	16	2. 1
No. 4	(□)	-59	3.3	2. 2	1.5	1, 019	20	10	2.0
No. 5-1	(<mark>O</mark>)	-100	8.2	4.6	1.8	828	23	11	2.1
No. 5-2	(<mark>O</mark>)	-52	4.3	2.6	1.7	876	24	12	2.0
No. 5-3	(O)	-42	3.6	2.2	1.6	1, 486	41	21	2.0

3.1 片振幅塑性率_志 μ Table1 より, _±μは3.3~9.5 であり, 折返しブレース全体のμと比べて1.5~2.2 倍大 きな値であった. 芯材の断面形状の違いで比較すると, H 形鋼の_±μは5.8~9.5, 円形鋼管が3.6~8.2, 角形鋼管 が3.3 と, H形鋼, 円形鋼管, 角形鋼管の順で局部座屈 発生時の_±μが小さな値となっている. この傾向は, 文 献[8]等に示される一般的な鋼材ブレースの局部座屈特 性と対応している. つぎに, 同一断面の試験体につい て, 載荷スケジュールの違いで比較する. まず No.3-1 と No.3-2 を比較すると, ピーク変位に至るまで載荷ス ケジュールが異なっていても_±μ に大きな差が生じて

1:日大理工・院(前)・海建 2:青木あすなろ建設(株) 3:日大理工・海建 4:日大理工・教員・海建 5:日大・名誉教授

いない. 一方, No.5-1 と No.5-3 を比較すると, 少ない サイクルで圧縮側に大変形を与えた試験体(No.5-1)は, 一定振幅で繰返し載荷した試験体(No.5-3)に比べて_志μ が2倍以上大きな値となっている. すなわち, 片振幅 塑性率では載荷スケジュールの異なる試験体の変形性 能を共通に評価できないことがわかる.

3.2 平均累積塑性変形倍率_芯 7 Table1 より、芯 材部分の平均累積塑性変形倍率素前は 20~211 の範囲で あり, 折返しブレース全体の ŋと比べて 2.0~2.7 倍大きな 値であった.

4. 芯材の局部座屈が発生する変形レベルの評価

4.1 推定塑性率 μ_{es} (推定值) 文献[6]では, 短 柱圧縮材に局部座屈が発生するときの塑性率(以下,推 定塑性率 µes と称す)が、既往の単調圧縮載荷実験の結 果に基づいて断面形状(H形,円形,角形)毎に式(1)~式 (3)のように定式化されている.式(1)~式(3)では、各々 の断面寸法(幅,厚さ等)や材料特性(降伏応力,ヤング 係数)を反映した等価幅厚比(径厚比) & を用いて,推定 塑性率 μesを評価している.

<u>H 形断面</u>: $\mu_{es} = 0.998\xi^{-2.95}$ …(1) $\xi = \sqrt{\left(\frac{b}{2t}\right)^2 \frac{\sigma_{yy}}{E}} + \left(\frac{d}{w}\right)^2 \frac{\sigma_{yw}}{6E}$ ξ:等価幅厚比 b:フランジ幅 t:フランジ厚 d:せい w:ウェブ厚 _{σyw}:ウェブ降伏応力 _{σyf}:フランジ降伏応力 E:ヤング係数:205×10³ $\cdots(2) \quad \xi = \frac{d}{t} \sqrt{\frac{\sigma_y}{F}}$ <u>角形断面:</u> $\mu_{es} = \frac{1}{\xi^2 - 0.25}$

ξ:等価幅厚比 d:せい t:部材厚 σ_y:降伏応力 E:ヤング係数:205×10³ N/mm²

円形断面: $\mu_{es} = 0.205\xi^{-1.39}$ …(3) $\xi = \frac{D}{r}\frac{\sigma_y}{r_F}$

ξ:等価幅厚比 D:径 t:部材厚 σy:降伏応力 E:ヤング係数:205×10³ N/mm²

4.2 全振幅塑性率_x μ' (実験値) 前述の式 (1)~式(3)は短柱の単調圧縮載荷に基づく実験式である のに対して、折返しブレースの実大実験は主に正負交 番の繰返し漸増載荷である.そこで,実験結果の塑性 率を推定塑性率 µesと対応させるため, Fig.2 の概念図 に示すピーク変位直前の除荷時◇から、ピーク変位時 ◆までの圧縮側全振幅変位素δ′を降伏変位素δ_vで除した 値を,全振幅塑性率_芯μ'と定義する(式(4)).

4.3 _芯μ′とμ_{es}の比較 全振幅塑性率志μ'(実験 値)と推定塑性率 μes (推定値)の一覧を Table2 に、相関 図を Fig.3 に示す. 図表より, No.1(H)と No.2(H)を除く 全ての試験体で_芯µ'(実験値)とµes(推定値)が概ね対応し ていることがわかる. すなわち, 式(1)~式(3)を用いて 芯材の全振幅塑性率を算出すれば、折返しブレースに 局部座屈が発生する変形レベルが概ね評価可能である といえる.なお,No.2(H)の実験値が推定値を下回った のは、限界点に至る前に高力ボルト摩擦接合部が滑っ たところで実験を終了したためである. また, No.1(H) の実験値が推定値の2倍以上大きかったのは、中鋼管

に組立鋼管を用いたため芯材との隙間(片側 2mm)が小 さく, 芯材の局部座屈を中鋼管が拘束したためと考え られる.

5. まとめ

以上,本報(その2)では,芯材部分の変形性能につい て検討した.得られた知見を以下にまとめる.

1)芯材部分の片振幅塑性率xµは 3.3~9.5 であり、ブレ ース全体のμに比べて 1.5~2.0 倍大きい値を示した.

2)芯材部分の平均累積塑性変形倍率芯前は 20~211 であ り,ブレース全体のῆに比べて 2.0~2.7 倍大きい値を 示した.

3)既往の短柱圧縮材の局部座屈発生時の塑性率µes算定 式を用いて芯材の全振幅塑性率素 μ'を算出すれば,折 返しブレースに局部座屈が発生する変形レベルが概 ね評価できることがわかった.

【参考文献】

- [1] 北嶋, 波田ほか: 折返し部材のブレース材適用の有効性に関する検討(その1~2), 日本建築学会大会学術講演梗概集, C-2, pp.975-976, 2010, pp.861-862, 2011
- 北嶋,波田ほか:折返しブレースの構造特性に関する実験的研究(その1~7),日本 [2] 建築学会大会学術講演梗概集, C-1, pp.747-750, 2012, pp.1287-1292, 2013, pp.1051-1052, 2014, pp.1077-1078, 2015
- 北嶋、波田ほか:細長比 λ=260のΗ形鋼芯材を用いた実大折返しブレースの実験 [3] 的研究(その1~2), 日大理工学部学術講演会, pp.199-122, 2015
- 北嶋, 波田ほか:部材長 10m の長尺折返しブレースの実大加力実験(その 1~2), AIJ [4] 大会, pp.795-798, 2016
- 北嶋,波田ほか:円形鋼管を用いた折返しブレースの実大加力実験,AIJ大会, [5] pp.1201-1202, 2017
- 日本建築センター:エネルギーの釣合いに基づく耐震計算法の技術基準解説及び計 [6] 算例とその解説, p40,2006.6
- 日本建築学会:鋼構造制振設計指針, p38, 2014.11 [7]

志δ

建築研究所監修:鋼構造建物へのエネルギー法活用マニュアル 第1版, 技報堂, [8] 2008.9 $_{\varpi}\mu' = \frac{\varpi \delta'}{}$

...(4)

全振幅塑性率:

Table2 Full Amplitude Plastic Modulus and Comparison of Estimated Plastic Modulus µes

Amplitude Plastic Modulus

