粘性土改良土の強度・変形特性 ー繰返し変形特性のひずみ依存性ー Strength and Deformation Characteristics of Cement-Treated Clays -Strain Dependency of Cyclic Deformation Properties-

○小田 恭平¹, 山田 雅一², 道明 裕毅², 近藤 壮一郎³ *Kyohei Oda¹, Masaichi Yamada², Yuki Domyo², Soichiro Kondo³

Abstract: The objective of this study is to obtain the mechanical properties of cement-treated clays in long ages. To this end, the hollow cylindrical torsional shear tests and the unconfined compression tests were performed by means of the samples of cement-treated Kaolin clays. This paper studied that the strain dependency of cyclic deformation properties of cement -treated clays.

1. はじめに

セメント安定処理地盤を基礎地盤や地盤災害の対策 として今後さらに利用拡大していくためには、地震時 の応答値を正確に評価することが必要である.一般に セメント安定処理地盤の地震の応答解析は、等価線形 解析で行われることが多い. この等価線形解析を行う ためには、せん断弾性係数のひずみ依存性(G~γ 関係)と 減衰定数のひずみ依存性(h~y 関係)の変形特性が必要 になる.

本報告は、セメント安定処理した粘性土改良土を用 いて繰返し中空ねじりせん断試験と一軸圧縮試験を行 い、その結果を用いて、繰返し変形特性のひずみ依存 性を検討する.

2. 試験概要

試料, 安定材の配合条件 2.1

試料はカオリンである. 試料の物理的性質を Table 1 に示す. 安定材にはセメント系固化材を用いた. Table 2には、固化材の配合条件と試験条件を示す.供試体の 作製については、既報1)を参照されたい.

		A	· ·	
Sample	Soil particle density	Liquid limit	Plastic limit	Plasticity index
	$\rho_s(g/cm^3)$	W _L (%)	Wp(%)	Ip(%)
Kaolin	2.663	63.5	33.0	30.5
Table 2 Pr	oduction con	litions of same	le and test co	nditions

T 11	4 3	D1 .		C 1
Table		Physica	nronerfies	of samples
raute	1.1	i n voica		or samples

Water ratio	Stabilizer amount	Water-to- stabilizer ratio	Mean effective stress	Anisotropic consolidation stress ratio	Age
W (%)	$C(kg/m^2)$	W/C (%)	σ'_{m} (kN/m ²)	K	(days)
120	50 100 150	60	42, 59, 82	0.4	28~30

2.2 試験方法

中空ねじりせん断試験は、Table 2 に示すように固化 材添加量 C, 平均有効主応力 o'm(=(o'a+2o'h)/3)を変動因 子として, 圧密応力比 K(=σ'h/σ'a)=0.4 の異方応力状態 として,所定の軸方向応力 σ'aと側方向応力 σ'hで圧密

した. 圧密終了後, JGS 0543 に準じてひずみ制御によ り一定ひずみ振幅波を非排水条件で繰返し載荷(11 回) した.また、中空ねじりせん断試験と同じ材齢で、円 柱供試体に対して一軸圧縮試験を JIS A 1216 に準拠し て行った.

3. 繰返し変形特性のひずみ依存性の検討

3. 1 せん断弾性係数比とせん断ひずみの関係

Fig.1 に固化材添加量C=100(kg/m³)における試験結果 から得られたせん断弾性係数比 G/G₀~せん断ひずみ γ 関係を, Fig.2 に平均有効主応力 σ'm=82kN/m²における G/G0~y 関係をそれぞれ示す. Fig.1 より, 粘性土改良土 の $G/G_{0-\gamma}$ 関係は、 σ'_m の影響を受けていないことが見 て取れる.一方で、Fig.2より、固化材添加量Cの差異 が G/Go~y 関係に影響を及ぼしていることが見て取れ る.

3.2 減衰定数とせん断ひずみの関係

Fig.3に固化材添加量C=100(kg/m³)における試験結果 から得られた減衰定数 h~せん断ひずみγ関係を, Fig.4 に平均有効主応力 σ'm=82kN/m²における h~y 関係をそ れぞれ示す. Fig.3~Fig.4 よりせん断ひずみγが0.1%ま では固化材添加量 C と平均有効主応力 σ'm の影響を受 けていないが、せん断ひずみγが0.1%を超えたあたり から固化材添加量 C と平均有効主応力 σ'm に相違が見 られた.

3.3 規準ひずみと平均有効応力の関係

地盤材料の応力-ひずみ関係を定式化する際には規 準ひずみ угが必要となる. そこで本報告では, 粘性土 改良土の規準ひずみ γr(G/Go が 0.5 となるときのせん断 ひずみ)について検討する. Table.3 に本試験結果より得 られた規準ひずみγrと一軸圧縮強度 qu を示す.

Fig.5 には、試験結果から得られたカオリン改良土の 規準ひずみ γr と平均有効主応力 σ'm の関係についてセ メンテーション効果の相違による影響を取り除くため

1:日大理工・学部・建築 2:日大理工・教員・建築 3:日大理工・院(前)・建築

qu/quo(セメンテーション効果の度合を表す指標 ²)で除 し,さらに基準平均有効主応力 σ'mo で正規化した関係 を示した.

同図に示した本試験結果から、図中に示した(1)式が 得られ、セメント安定処理した粘性土改良土の規準ひ ずみ γ_r は、固化材の配合条件、圧密応力条件に関わら ず q_u 値から評価できることが示唆される.

$$\gamma_{\rm r}\left(\frac{q_{\rm uo}}{q_{\rm u}}\right) = 0.0013 \left(\frac{\sigma'_{\rm m} q_{\rm uo}}{\sigma'_{\rm mo} q_{\rm u}}\right)^{0.911} \tag{1}$$

ここで qu は一軸圧縮強度, quo は基準一軸圧縮強度 (=98kN/m²), σ'mo は基準平均有効応力(=98kN/m²)である.

Fig.5 Relation between normalized $\gamma_r \sim \sigma'_m$

Stabilizer amount	Mean effective stress	Reference strain	Unconfined compression strength
C (kg/m ³)	$\sigma'_{m} (kN/m^{2})$	$\gamma_r(\%)$	$q_u(kN/m^2)$
50	42	0.070	147
	59	0.082	147
	82	0.113	134
	42	0.093	221
100	59	0.105	172
	82	0.103	237
150	42	0.043	394
	59	0.068	347
	82	0.090	365

Table 3. Relationship between γ_r and q_u

4. まとめ

本報告をまとめると以下の通りである.

- ①本試験結果より得られた h~γ 関係から,減衰定数 h はせん断ひずみγが0.1%までは固化材添加量Cと平 均有効主応力σ'mの影響を受けないが,せん断ひず みγが0.1%を超えたあたりから固化材添加量Cと平 均有効主応力σ'mによる相違が見られた.
- ②カオリン改良土の一軸圧縮強度 qu で正規化した規準 ひずみ γr と平均有効主応力 σ'm の関係には、固化材 の配合条件、圧密応力条件の影響を受けない相関関 係が認められた。

【参考文献】 1)渡邊俊治他:粘性土改良土の強度・変形特性-排水ねじりせん断強 度-,平成23年度日本大学理工学部学術講演会論文集,pp.235-236, 2011.

20日1 20日日雅一他:中空ねじりせん断試験によるセメント改良砂の強度・ 変形特性,日本建築学会構造系論文集,第 570 号, pp.107-114, 2003.