パルスレーザ堆積法を用いて Yttria-Stabilized Zirconia(YSZ) (111)基板上 に作製した YbFe₂O₄ 薄膜の結晶構造 Fabrication and Crystal Structure of YbFe₂O₄ Thin Films Deposited on Yttria-Stabilized Zirconia (YSZ) (111) Using Pulsed Laser Deposition Method

○寺地勇博¹,平岡恭也²,岡本卓也²,山田隼平¹,坂本洸大¹,岩田展幸³

*Takehiro Teraji¹, Kyoya Hiraoka², Takuya Okaoto², Syunpei Yamada¹, Koudai Sakamoto¹, Nobuyuki Iwata³

Abstract: YbFe₂O₄ films are fabricated by pulsed laser deposition (PLD) method. To obtain high quality thin films, lattice mismatch is one of most important parameter. The lattice mismatch of YbFe₂O₄ in-plane is -27.4% and -4.59% against *c*-Al₂O₃ and YSZ(111) substrates. YbFe₂O₄ thin films are obtained on *c*-Al₂O₃ substrate, however, YbFe₂O₄ thin films were not grown on YSZ(111). Yb₂O₃ thin films are formed on YSZ(111).

1.背景・目的

三角格子希土類鉄複電荷酸化鉄 RFe₂O₄(*R*=Y, Dy-Lu, Sc, In) は Fe²⁺と Fe³⁺の局在による極性な電荷秩序を起源とする電子型強誘電体として知られている.電子型強誘電体は従来の強誘電体とは異なり,イオン変位ではなく極性な電荷秩序を分極の起源とする. *R*Fe₂O₄の結晶構造を Figure 1 に示す. *R* と O が作る三角格子層 1 枚(*R* 層)と Fe と O が作る三角格子層 2 枚(*W* 層) が *c* 軸方向に交互に積層した層状化合物である.

Figure 1 RFe_2O_4 の結晶構造 $R \ge O$ が作る三角格子層 1 枚(R 層), Fe $\ge O$ が作る三角格子層 2 枚(W 層)が c 軸方向に交互に積層した層 状化合物である.鉄の三角格子が 2 枚重なった層 W 層は $Fe^{2+} \ge Fe^{3+}$ の 秩序配置により微視的な電気分極を持つ.

W 層において RFe₂O₄の Fe イオンの平均価数は+2.5

であり、Fe²⁺とFe³⁺が三角格子上に同数存在する.クー ロン力によりFe²⁺とFe³⁺が隣り合うことが安定である ため、三角格子上で電荷フラストレーションが生じる. そのため、W層内で[110]方向にFe²⁺とFe³⁺が長距離秩 序を形成し、Fe 価数の違いによる微視的な電気分極を 生じる.電気分極を持つW層が強的に積層する場合、 強誘電性を発現するが、そうで無い場合、反強誘電体 となる。強誘電性の存在に関しては議論の余地が残る. [1-2].

*R*Fe₂O₄は電子が直接電気分極を担うため、イオン変 位型強誘電体と比べて速く低エネルギーで分極反転が 可能で繰り返し耐久性が高いことが期待され、さらに は Fe イオンがスピン秩序も担うため電気磁気効果も 観測されている[3].

このような RFe_2O_4 の特徴的な強誘電性・電気磁気効 果は強誘電体メモリや低消費電場駆動型メモリなどに 応用できる.そこで、デバイス応用のための第一段階 として RFe_2O_4 の薄膜化を目指している.

しかし RFe_2O_4 の電荷秩序やそれに基づく物性は化 学当量性に非常に敏感で、Fe の高い揮発性のため薄膜 化が難しく報告も少ない、そこで比較的組成ズレの起 こりにくい Yb を R 原子として選択し、パルスレーザ 堆積法 (Pulsed Laser Deposition : PLD 法) による薄膜 化に取り組んでいる.

一般的に、薄膜作製を行う際,下地となる基板と積 層する薄膜間の面内格子定数のミスマッチが小さいほ ど格子ズレによるストレスを軽減でき,良質な結晶性 を持つ薄膜が作製可能である[4].先行研究で用いてき た c 面サファイア(c-Al₂O₃)基板では YbFe₂O₄ との格子 ミスマッチが-27.4%であった.一方,YSZ(111)基板を 用いることで格子ミスマッチを-4.59%にまで軽減でき

1:日大理工・学部・電子 2:日大理工・院(前)・電子工学専攻 3:日大理工・教員・電子

るため,本研究では YSZ(111)基板を用いた薄膜作製を 試みた.

2. 目的

結晶性が高く電荷秩序構造を持つ YbFe₂O₄の薄膜を YSZ(111)基板上に作製することを目的とする.

3. 実験方法

c-Al₂O₃ 基板と YSZ(111) 基板をアセトン5分, 15分, エタノール 5 分間、超音波洗浄を行なった.その後 *c*-Al₂O₃ 基板は 1050°C 大気中で 12 時間のアニール処理 を行ない, YSZ(111) 基板は 1150°C 大気中で 3 時間のア ニール処理を行った.

成膜条件を Table I に示す. 試料 1,2 はそれぞれ *c*-Al₂O₃ 基板と YSZ(111)基板上に,PLD 法により YbFe₂O₄ ターゲットを用いて成膜を行ったものである. ヒーター温度 850°C,レーザ周波数 2Hz,レーザエネル ギー密度 1.24J/cm²,成膜時間 60 min.,照射面積 2.45 mm²,マスクサイズ 108 mm²,酸素分圧が 1.3×10⁻⁵Pa となるように酸素導入しながら成膜を行った.

表面像の評価には走査型プローブ顕微鏡(SPM:日立 ハイテク_SPA400, Nanonavi Station)を用いて Dynamic Force Mode にて測定を行なった.結晶構造の評価には, X線回折装置(D8 DISCOVER:BRUKER AXS)を用いた.

試料名	試料1	試料 2
基板	$c-Al_2O_3$	YSZ(111)
ヒータ温度[℃]	850	850
レーザ周波数[Hz]	2	2
レーザエネルギー密度 [J/cm2]	1.24	1.24
背圧[Pa]	8.6×10 ⁻⁵	1.0×10 ⁻⁵
O ₂ 分圧	1.0×10 ⁻⁵	1.3×10 ⁻⁵
成膜時間	60min.	60min.
照射面積	2.45	2.45

Table I 成膜条件

結果・考察

Figure 2 に試料 1 および試料 2 の 2θ - θ パターンを示 す. 試料 1 では 10°,20°,30°,55°,65°付近にそれぞれ YbFe₂O₄(0 0 0 3), YbFe₂O₄(0 0 0 6), YbFe₂O₄(0 0 0 9), YbFe₂O₄(0 0 0 15), YbFe₂O₄(0 0 0 18) の *c* 軸配向の結晶 ピークが観測された. 試料 2 では YbFe₂O₄の *c* 軸配向 の結晶ピークが観測できず, 30°,45°, 60°,100°付近にそ れぞれ Yb₂O₃(222), Yb₂O₃(143), Yb₂O₃(444), Yb₂O₃(66)の Yb₂O₃の結晶ピークが観測された.

YSZ(111)基板上には YbFe₂O₄ 薄膜が形成されておら ず、Yb₂O₃ 薄膜が形成されていることから、成膜時に Feイオンが基板上に定着せず揮発してしまったことが わかった.これより、YSZ(111)基板上に YbFe₂O₄ を成 膜するためには、Fe イオンが揮発しないように不活性 ガスの導入を行うなどの工夫が必要である.

Figure 2 試料 1,2 の 2θ-θパターン 試料 1 は YbFe₂O₄//*c*-Al₂O₃ であ り、10°,20°,30°,55°,65°付近で *c* 軸配向の結晶ピークが確認できる. 試料 2 は YSZ(111)上に YbFe₂O₄ ターゲットを使用して成膜を行った が、YbFe₂O₄ の *c* 軸配向の結晶ピークが確認できず 30°,45°,60°,100° 付近に Yb₂O₃の結晶ピークが確認された.

5. まとめ

 $c-Al_2O_3$ 基板とYSZ(111)基板を用いてYbFe₂O₄の薄膜 作製と評価を行なった. $c-Al_2O_3$ 基板でなくYSZ(111) 基板を用いることで格子ミスマッチの軽減による膜質 改善を試みた.YbFe₂O₄ターゲットを用いて成膜を行 ったが,YbFe₂O₄薄膜が形成されておらず,Yb₂O₃薄膜 が形成されていた. $c-Al_2O_3$ と同条件での成膜では, YSZ(111)基板では Fe イオンが揮発していたことがわ かった.

6. 参考文献

[1] N. Ikeda et al., *Nature (London)* **436** 1136 (2005).

[2] T. Nagata et al., Appl. Phys. Lett. 110(5) 052901 (2017).

[3] T. Kambe et al., Phys. Rev. Lett. 110(11) 117602(2013).

[4] T. Fujii et al, *Japanese Journal of Applied Physics*, **57**, 010305(2018).