柔軟 UAV の飛行制御 -機体の動解析-Flight Control of a Flying-Wing UAV with Flexibility -Dynamic Analysis of Thin Plate Body-

武藤充¹,内山賢治²,増田開² Mutoh Mitsuru¹, Kenji Uchiyama², Kai Masuda²

UAV(Unmanned Aerial Vehicle) is treated in many missions such as inspection of the building, delivering observing the place where people cannot enter. The conventional UAV tends to have a rigid and heavy structure, and its complexity causes high manufacturing and design cost. To overcome these disadvantages, we propose light flying-wing UAV with simple structure that consists of motors, sensors, and an electric circuit. However, the flying-wing UAV would bend during the flight due to its flexibility. In this paper, we clarify the dynamic characteristics of the flying-wing UAV by using ANCF (absolute nodal coordinate formulation) for the calculation of large deformation of the body and thin wing theory for the calculation of aerodynamic forces.

1. 緒言

固定翼型やマルチコプタなど、様々なタイプの UAV が多種多様なのミッションに用いられるようなになっ てきた.その中でも固定翼機は,広範囲の水平飛行を 行うことで効率良く情報の収集が可能という長所を有 しているが、定点観測や狭い範囲の観測には不向きで ある.一方,回転翼機は特定箇所の観測情報を取得する ことは可能だが、固定翼機と比較すると燃料消費が多 くなるという問題を抱えている[1]. これらの問題に対 して,機体の姿勢を水平から垂直へと変化させるテー ルシッター型の UAV ^[2]や、可変翼型の UAV が開発さ れるなど、固定翼型 UAV と回転翼型 UAV の特徴を併 せ持つ UAV が注目されている.しかし, 遷移飛行時に おける機体運動の非線形性等から,安定した飛行を実 現する制御系の設計は難しく、安全性が十分に保障さ れているとは言えない. さらに、構造が複雑化する傾 向にあるため、故障率の増加は避けられない.

そこで本研究では、小型軽量かつ簡素な構造のUAV の開発を試みる.開発するUAVは、薄板一枚にモータ とアクチュエータ及び制御基板を搭載する全翼機型と する.構造の簡素化と機体の軽量化により、コスト面 でも優れた機体となると考えられる^[3].しかし、構造的 に剛性が小さくなるため機体が変形し、飛行中に振動 が励起されてしまう^[4].そのため、薄板を用いた全翼機 型 UAV の飛行制御系を設計する際は、機体の柔軟性 を考慮する必要性がある.

本稿では、まず、柔軟性を有する全翼機型 UAV のダ イナミクスを定式化する.梁モデルでは質量マトリク スが単純な記述で表されることから、マルチボディ・ ダイナミクスの手法に組み込むのに適している Absolute Nodal Coordinate Formulation(ANCF)を用い、構 造解析を行う.^[5]また,空気による外力の計算には、薄

1:日大理工・修士・航宇 2:日大理工・教員・航宇

翼理論⁶⁰を用いて算出する.これらの計算を組み合わせることで機体胴体の運動解析を行う.

2. 解析理論

ANCF を用いて機体の動解析を行った。運動方程式は (1)式で表される^[5].

 $\mathbf{M}\ddot{\mathbf{e}} + (C_{\alpha}\mathbf{M} + C_{\beta}\mathbf{K}_{t})\dot{\mathbf{e}} + (\mathbf{K}_{t} + \mathbf{K}_{t})\mathbf{e} = \mathbf{Q}_{f} \quad (1)$ ただし,各変数は以下に定義する.

Figure 1. Deformation of beam

$$\frac{\partial r_1}{\partial \mathbf{x}}\Big|_{\mathbf{x}=0} = e_3, \frac{\partial r_2}{\partial \mathbf{x}}\Big|_{\mathbf{x}=0} = e_4, \frac{\partial r_1}{\partial \mathbf{x}}\Big|_{\mathbf{x}=l} = e_7, \frac{\partial r_2}{\partial \mathbf{x}}\Big|_{\mathbf{x}=l} = e_8$$
$$\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \mathbf{S}\mathbf{e}$$
$$\mathbf{S} = \begin{bmatrix} 1 - 3\zeta^2 + 2\zeta^3 & 0 \\ 0 & 1 - 3\zeta^2 + 2\zeta^3 \\ l(\zeta - 2\zeta^2 + \zeta^3) & 0 \\ 0 & l(\zeta - 2\zeta^2 + \zeta^3) \\ 3\zeta^2 - 2\zeta^3 & 0 \\ 0 & 3\zeta^2 - 2\zeta^3 \\ l(-\zeta^2 + \zeta^3) & 0 \\ 0 & l(-\zeta^2 + \zeta^3) \end{bmatrix}^T$$
$$\mathbf{e} = [e_1 \ e_2 \ e_3 \ e_4 \ e_5 \ e_6 \ e_7 \ e_8]^T$$

 C_{α} , C_{β} は減衰係数, r は位置ベクトル, A_{ρ} は単位長さ 当たりの質量, lは要素長さ, Eはヤング率, Aは断面積 とする. M, K_{l} , K_{t} については文献[5]を参照されたい.

3. **Q**fの定義

薄翼理論から i 番目要素の循環強さ γ_i を算出した^[6].

$$\begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \dots \\ \gamma_{n} \end{bmatrix} = 2\pi V \begin{bmatrix} C_{11} & \cdots & C_{1n} \\ C_{21} & \cdots & C_{2n} \\ \dots & \dots & \dots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix}^{-1} \begin{bmatrix} \alpha - \frac{e_{0} - e_{2}}{e_{5} - e_{1}} \\ \alpha - \frac{e_{14} - e_{10}}{e_{13} - e_{9}} \\ \dots \\ \alpha - \frac{e_{4(n+1)-2} - e_{4n-2}}{e_{4(n+1)-3} - e_{4n-3}} \end{bmatrix}$$
(2)
$$\mathbf{C}_{ij} = \frac{e_{4(j+1)-3} - e_{4j-3}}{e_{4i-3} - x_{0j}}$$
(3)

$$x_{0j} = e_{4j-3} - \left(e_{4(j+1)-3} - e_{4j-3}\right)/2 \tag{4}$$

ただし,αは迎角,nは要素数とする.各循環強さか ら,i番目要素の誘導速度*vs*_iを算出し,ベルヌーイの定 理を用いて翼上下面の圧力差*pi*_iを算出した.

$$vs_i = \sum_{j=1}^{j=n} \mathbf{C}_{ij} \, \gamma_j \tag{5}$$

 $ps_i = sgn(a) \times ((vs_i + Ua)^2 - (-vs_i + Ua)^2)\rho/2$ (6) ,外力行列 \mathbf{Q}_f は, pi_i を用いてi番目の接点にかかる空気 力を算出することで求めた.

$$\mathbf{Q}_{fi} = \begin{bmatrix} \frac{(ps_{i-1}S_{i-1} + ps_iS_i)\sin\theta s_i}{2} \\ \frac{(ps_{i-1}S_{i-1} + ps_iS_i)\cos\theta s_i}{2} \\ 0 \\ 0 \end{bmatrix}$$
(7)

ただし両端の要素は、その他の要素の面積半分となる ことから、両端の外力を次式で定義する.

$$Q_{f1} = \left[\frac{ps_1 S_1 \sin \theta s_1}{2} \quad \frac{ps_1 S_1 \cos \theta s_1}{2} \quad 0 \quad 0\right]^T$$
(8)

$$Q_{fn+1} = \begin{bmatrix} \frac{ps_n S_n \sin \theta s_n}{2} & \frac{ps_n S_n \cos \theta s_n}{2} & 0 & 0 \end{bmatrix}^T$$
(9)

*Si*は*i*番目要素面積, *θsi*は*i*番目要素角度とする.

4. 数値シミュレーション

胴体の緒言を Table 1 に示す.固定ステップを2× 10⁻⁶[s]とする.機体の運動方程式を数値積分することで,時間とともに位置や姿勢の変化を計算する.

迎角 0.1[rad],対気速度 1[m/s]とし,胴体の初期状態 の e の全ての要素を 0 とした. Figure 2 に結果を示す. 変形序盤は,循環の影響が一番大きくなる胴体中央部 が大きく変形している.機体前端は,気流に対し 0.1[rad]に近づくにつれ,空気力によるy軸方向の移動 が起き難くなった.一方,胴体後端は気流に対し 0.1[rad] より大きな角度がつくことで,y軸方向により大きく移 動した.その結果,胴体の変形は中央に対して後方の 変位が大きくなった.最終的には風と平行になる姿勢 になると考えられる.

Table 1 Specification of flexible UAV	
Young ratio E	100[GPa]
Mass per unit length A_{ρ}	1.2×10^{-5} [kg/m]
Unit length <i>l</i>	0.02[m]
Cross section A	$1.2 \times 10^{-5} [m^2]$
Attenuation coefficient C_{α}	0
Attenuation coefficient C_{β}	0
Number of element n	10

5. 結言

薄翼理論とANCF を組み合わせることで,柔軟性を 有する UAV の機体運動を表現し,動解析を行った. 今 後は,胴体運動の解析を行い,機体の安定した飛行を 実現させる制御系を設計する.

参考文献

[1]渡邊雅仁, "動力付きパラグライダ型 UAV 研究について", システム/制御/情報, 58 巻, 第2号, 2014, pp. 69-74.

[2]大瀬戸篤司,"4 ロータテールシッタ無人航空機及び その制御システムの設計と実装",東北大学機関リポジ トリ, 2014.

[3] Yihong Mouet, et al., "The flight control of micro quadrotor UAV based on PID", 31st Youth Academic Annual Conference of Chinese Association of Automation, 2016, pp.353-356.

[4]橋本敦 他,"低速デルタ翼フラッタ現象における大 変形振動流れ場の解析",日本航空学会論文集,55巻, 第 637 号,2007, pp.104-110.

[5]高橋義考,清水信行,"梁の多体動力学解析に関する 研究",日本機械学会論文集,67巻,655号,No.001-0898,2001年3月.

[6]牧野光雄: 航空力学の基礎(第3版), pp. 88-99, 2015.