レーザ溶接構造の公称構造応力算出法 T形継手への適用

Method for calculating nominal structural stress of laser welded structure

Application to T shape peel joint

○古川徹¹, 安部有輝¹, 大槻翼², 岡部顕史³, 冨岡昇³

*Toru Furukawa¹, Yuuki Abe¹, Tsubasa Otsuki² Akihumi Okabe³, Noboru Tomioka³

Recently, a development of the fatigue life prediction technology of weld by CAE is demanded. There is the method to evaluate by the nominal structural stress as one of the fatigue life prediction technology. The nominal structural stress (NS stress) means the maximum principal stress on the circumference of spot weld. And the method to accurately obtain the NS stress was presented in our previous studies. In this study, the NS stress calculation method of spot welding structure was applied to the laser welded structure. This paper is described the effect with regard to changing the bead-length using the laser welded T shape peel joint.

1. 緒 言

スポット溶接構造やアーク溶接構造における公称構造 応力(Nominal structural stress : NS stress)を用いた疲労寿命 予測手法が提案されている^{[1][2][3]}. 公称構造応力算出法を レーザ溶接構造に適用し,精度よく公称構造応力が得ら れれば,レーザ溶接構造の疲労寿命を予測することが可 能になると考えられる.

レーザ溶接重ね継手に公称構造応力算出法を適用し, 引張せん断荷重下で得られた重ね継手の疲労データを, 公称構造応力応力で整理できることが示され,またスポ ット溶接の疲労データとも統一的に整理できる可能性が 示された^[3].

本研究では、レーザ溶接 T 形継手に公称構造応力算出 法を適用し、はく離荷重下での T 形継手の疲労データと 公称構造応力との関係を検討した.

2. レーザ溶接の公称構造応力算出法

レーザ溶接構造の公称構造応力算出法は、ビード端部 をスポット溶接のナゲットと見なし、弾性学の板理論を 用いて応力解析し、応力解を得る手法である.ビード端部 はビード幅を直径 *d* とする剛体円とし、ビード端部を中 心とする直径 *D* 円板内の応力は以下のようにして得る.

- (1) 円板の中央に作用する荷重(分担荷重)を荷重条件, 円板円周上の変位を変位境界条件とする問題を,板理 論を用いて解き,円板内の応力解を得る.
- (2) 内縁部と外縁部が完全に固定された円板に強制変位 が生じることを考慮して、板理論は弾性理論によって 解決される.強制変位はレーザ溶接のビードに生じる 変位を意味する.
- (3) (1)の応力解と(2)の応力解を重ね合わせて円板内の応力解を得る.

3. レーザ溶接 T 形継手の FE モデル

レーザ溶接 T 形継手の FE モデルを図 1 に示す. 図 1 に 示すように,L 形板 2 枚を 15[mm]幅板面(フランジ部)を 重ね合わせレーザ溶接し,6[mm]幅板面の片側板端を固定 し,一方の片側板端に荷重 Fx = 300[N]を加えた.

Fig. 1 FE model of laser welded T shape peel joint

図1に示すレーザ溶接部FEモデルは、ビード幅を直径 とする円柱が連続しているとしてモデル化した.また溶 接部は剛体バー要素とビーム要素で作成し、その他は四 角形シェル要素で粗いメッシュ分割とした.ビード幅 *w* は2.0[mm]一定とし、ビード長さ*L*については、80[mm] ~96[mm]の範囲で増減させた.

4. 解析結果

ビード長さを増減させた場合の、荷重側のビード端部 の主応力分布を図2に示す.図2よりビード長さを増減 させても公称構造応力(最大主応力)が生じる位置は、荷重 側で θ=200 [deg]付近となった.またビード長さが長くな るほど応力値が小さくなった.これはビード長さが長く なるほどビード端部に生じる分担荷重が小さくなるため である.

図 3 にビード長さを増減させたときの公称構造応力値 ・日大理工・教員・機械

1:日大理工・学部・機械、2:日大理工・院(前)・機械、3:日大理工・教員・機械

を示す.図3より公称構造応力値をビード長さの増減値 を用いて直線で近似できることが分かった.

Fig. 2 Principal stress distribution by the increase and decrease of bead length

Fig. 3 Nominal structural stress by the increase and decrease of bead length

5. 疲労試験

本研究では、周波数 10 [Hz]とし引張振幅荷重 F を変化 させて剥離疲労試験を実施した.疲労試験終了条件はき 裂発生時点を目視で確認しながら負荷位置の変位値でリ ミッタを設定するとした.今回の疲労試験ではビード長 さ 84[mm]のみの試験片を用いた.

図4に振幅荷重で整理したレーザ溶接T形試験片の疲 労データを示す.図4より荷重が大きいほど破断回数*N*_fが小さくなることが分かる.

図5に公称構造応力で整理した S-N 線図を示す. 図中 にはレーザ溶接重ね継手の疲労データとスポット溶接継 手の疲労データも示す. 図5よりレーザ溶接T形継手の 剥離荷重下での疲労データは、レーザ溶接重ね継手やス ポット溶接継手の疲労データと比べて高寿命側となった が、レーザ溶接T形継手疲労データは、他の溶接継手の 疲労データと共に、ほぼ統一的に整理できることが分か った.

Fig. 4 Relation between amplitude load and facture cycle number

Fig. 5 S-N diagram

6. 結 言

スポット溶接構造の公称構造応力算出法をレーザ溶接 構造に適用し、レーザ溶接 T 形継手を用いてビード長さ の変化が公称構造応力に及ぼす影響について検討した. 主な結果を以下に示す.

- 1) ビードの長さの増減に関わらず、公称構造応力の生じ る位置がほぼ同じ(200[deg]付近)となった.
- 2) ビードの長さの増減値に対して公称構造応力値は直 線的に変化することが示された.
- 3) レーザ溶接T形試験片の疲労データを、公称構造応力 を用いて整理できることを示した.

参考文献

- 岡部, 冨岡, 沢村:「面内荷重に対するスポット溶接 構造の公称構造応力計算法」,自動車技術協会, Vol.35, No.3, pp.187-192, 2004
- [2] 加藤, 岡部, 冨岡:「アーク溶接構造の公称構造応力 算出法」, 自動車技術会論文集, Vol.39, No.2, pp.351-356, 2008
- [3] 金子,松浦,山下,岡部,冨岡:「公称構造応力による ライン溶接構造物の疲労寿命予測」,自動車技術協会, 20166156, pp.816-819, 2016
- [4] 尾野,金井,小高,大槻,岡部,冨岡:「レーザ溶接構
 造の公称構造応力による疲労寿命」,pp.59,2018