鉛直シアリンクシステムを用いた制震改修に関する研究

A research on seismic retrofitting using vertical shear link system

○河内佑介⁴,秦一平¹,阿久戸信宏¹
郭釣桓²,市川達也³,川口雄暉³
*Yusuke Kawachi⁴, Ippei Hata¹, Nobuhiro Akuto¹
Chunhuan Kuo², Tatsuya Ichikawa³, Yuki Kawaguchi³

Abstract: This paper shows we verified that the vertical shear link system proposed as a vibration damping mechanism for tower structures functions effectively. For verification, the C-type and MC-type tuned dynamic mass systems shown in previous studies were introduced into the vertical shear link system, and vibration tests were performed using sine waves and seismic waves.

1. はじめに

これまでの鉄塔構造物の設計においては風荷重が支 配的であり、地震荷重に対しては十分な耐力を保持し ていると考えられていた.しかし,建設電気技術協会 の「新潟県中越沖地震における電気通信施設被災状況 調査報告」[1],野島の「阪神・淡路大震災における電力・ ガス施設の被害と復旧」[2]によると兵庫県南部地震な どの近年に発生した大地震において、柱脚部や鉄塔部 材に被害を受けた例が多く,鉄塔構造物の地震対策の 必要性が高まっている. そこで,本研究では100m級の 鉄塔構造物を対象とした制震機構として提案する鉛直 シアリンクシステム(以下,本システム)を配置した 縮約試験体の動的性能確認試験を実施し、その応答低 減効果から制震性能を把握する.本システムは、水平 方向に配置するシアリンク型制震工法を改良し、塔状 構造物主柱材の鉛直方向にダンパー・腕水平材・腕斜 材を組合せる構成である.また,鉄塔構造物の外周に 配置する事で既存部材との干渉が少なく、構造物上部 への取付けやダンパーと腕斜材の入替え等が容易であ る. 更に、塔状建築物の曲げ変形(主柱材の伸び縮み) にも効果を発揮する制震機構である. なお, ダンパー として採用するものは、オイルダンパー単体の C型と、 古橋らの研究^[3]に記されているオイルダンパーとダイ ナミック・マス(D.M.)が並列に配置された MC型とす る. Fig.1 にモデル図を示す.

2. 試験体概要

試験体概要図を Fig.2 に示す. 試験体は, 高さ 120m・ 根開き約 25m の鉄塔構造物を模擬し, 鉄塔構造物の下 層部を縮約した 2 層モデルとした. 縮約スケールは約 1/7(平面 3m×3m, 高さ 4.2m)である. 下層部に 4 基 の本システムを配置し、ダンパー部材の有無により、 C型および MC型の試験を実施する.また、曲げ系の 振動モードを再現する為、試験体中心部を軸とする軸 回転柱を設け、かつ1層の主柱材をコイルばねとする ことで、ロッキング振動を模擬している.試験体の非 制震1次固有周期T₀は、試験の結果よりT₀ = 1.19秒 を採用している.なお、既往の研究⁽⁴⁾の設計方法より、 ダンパー諸元を設定している.Table1にダンパー諸元 と複素固有値結果を示す.試験体の減衰定数はC型が h = 0.04, MC型がh = 0.12である.

1:日大理工・教員・建築 2:日大理工・任期制職員・建築 3:日大理工・院(前)・建築 4:日大理工・学部・建築

3. 正弦波加振試験

C型, MC型による解析及び試験結果を Fig.3 に示す. Fig.3 の T₀(非制震), T_∞(C_d=∞), DM 同調(C_d=0)につい ては, 簡易設計^[4]にて説明している. また, Fig.3 より, X, Y および 45 度方向の試験値の応答倍率が同程度の 値であり、試験入力方向による応答低減効果の差はな い. 更に,解析値と試験値の応答倍率が同程度の値で あり、試験値と解析値の整合性も確認できる、Fig.3 よ り、C型, MC型は非制震時よりも, 共振点の応答倍率 を低減できている事から, C 型, MC 型を採用した本シ ステムが機能している事が確認できる.また,Fig.4 に 本システムのダンパー、腕水平材、腕斜材の支力図を 示す.支力図から、上記3部材にかかる軸応力の割合 が予測でき、本試験体において、その割合は1:0.79: 1.17 となる. ここで, Table2 に正弦波加振試験の例と して,加振周期1.2秒においての各部材応力値を示す. 軸力の関係が予測した支力図と概ね一致している事が 確認できる. なお, 上記3部材について, 試験結果の 曲げモーメントは0とみなせる程度の値であることを 確認した.

4. 地震波加振試験

入力地震波の応答スペクトル(h = 0.05)を Fig.5 に示 す. 本試験で採用する地震波は,1方向加振の告示波, BCJ-L2, 2 方向加振の JR-TAKATORI, JMA-KOBE と した. Table3, Table4 に C 型と MC 型の試験結果を示 す. 更に、比較のために非制震時の主柱変形と2層目 変位を()内に示す.パルス性地震動である JR-TAKATORI に対して、C型よりも MC型の制震効果が 顕著であることが確認できる.一方,試験体の制約上, 入力レベルを比較的小さくした告示波では、試験体の ダンパーの内部摩擦の影響によって、ダンパー変形が 小さく制震効果が減少したと考えられる.

5. まとめ

本論文では、本システムを用いた C型および MC型 試験体の試験結果を示した.正弦波および模擬地震波 を用いた動的試験により, C 型および MC 型の応答低 減効果を示すことで、本システムの有効性を確認した.

Model	Mode	Period(s)	h	C_d (kN·s/m)	<i>m_d</i> . (ton)	
Non-seismic	1st	1.185	-	-	-	
C type	1st 1.183		0.04	10.16	-	
MC turno	1st	1.303	0.12	10.16	2.46	
wie type	D.M.	0.97	0.18		3.40	
C type 25 10 20 10 20 10 10 0 0.4 0.6 0.8 1.0		And the second of the maximum and the second of the maximum and the second of the seco	MC type 20 15 0 0.4 0.6		- Non-seismi - cd=0 - cd=∞ - Analysis X-direction 45-degree 1.6 1.8 2	

Table 1 Complex eigenvalue analysis result and

Amplification factor of C type and MC type

Table 2 Stress of C type specimen

Element	5	Stress	Stress degree (N/mm ²)		
Element	Axial force (kN)	Bending moment(kN·m)	Axis	Bending	
Damper	Damper 0.66(1.00)		0.36	-	
Horizontally Arm material	0.48(0.73)	0.00	0.16	0.00	
Diagonal Arm material	0.73(1.11)	0.00	0.31	0.00	

Table 3 Test results for simulated ground motion of C type

Grand motion	1 way		2 way			
Wave	KOKUJI L2	BCJ-L2	JR- TAKATORI		JMA-KOBE	
Direction	Х	Х	Х	Y	Х	Y
Input scale	16.0%	-	3.3%		-	
2nd layer (mm)	23.7 (29.4)	-	24.8 (28.0)	24.7 (26.2)	-	-
Main pillar (mm)	6.9 (8.2)	-	10.9 (13.3)		-	
Damper (mm)	7.1	-	11.4		-	

Table 4	Test results	for	simulated	ground	motion	of MC	type

			<u> </u>			
Grand motion	1 wa	2 way				
Wave	KOKUJI L2	BCJ-L2	JR- TAKATORI		JMA-KOBE	
Direction	Х	Х	Х	Y	Х	Y
Input scale	16.0%	13.0%	3.3%		6.5%	
2nd layer (mm)	24.9 (29.4)	15.0 (28.6)	14.5 (28.0)	15.0 (26.2)	22.5 (28.5)	14.3 (18.4)
Main pillar (mm)	7.3 (8.2)	6.4 (8.6)	7.3 (13.3)		10.4 (12.2)	
Damper (mm)	9.0	8.1	8.5		12.5	

6. 参考文献

- [1] 新潟県中越地震における電気通信施設被災状況調査報告, 社団法人 建設電気技術協会 , 1941
- [2] 野島暢呂: 阪神・淡路大震災における電力・ガス施設の被 害と復旧,安全工学,35巻,1号,pp.50-56,1996
- [3] 鈴木亨, 古橋剛, 光坂勇治: 増幅機構付き減衰装置の高速 度領域における性能評価、日本建築学会大会学術講演梗 概集, B-2 分冊, pp.759-760, 2003.9 [4] 石丸辰治, 秦一平, 三上淳治, 公塚正行:付加剛比による
- D.M.同調システムの簡易設計法,日本建築学会構造系論 文集, 第75巻, 第654号, 2010.8