アンボンド PCaPC 部材の曲げ耐力式の提案 その2 既往の耐力式に対する検討と曲げ耐力式の提案 Equations for Predicting Ultimate Flexural Strength of PCaPC Members with Unbonded Tendons Part 2 Previous Research and Proposed Equations for Prediction of Flexural Strength

浜原正行¹, 小池正大², 〇増田雄太³, 福井剛¹

Masayuki Hamahara¹, Syohdai Koike², *Yuuta Masuda³, Tsuyoshi Fukui¹

Abstract: This paper presents equations for predicting ultimate flexural strength of precast prestressed concrete members having unbonded or round steels for tendons. The equations are based on a lower bound theory using a rectangular concrete stress block. Theoretical results obtained from the equations agree well with test results of members that fail in shear as well as those in flexure.

1. はじめに

本報告では、まず、既往のせん断耐力式では、アン ボンド部材、丸棒部材の最大荷重を統一的に評価でき ないことを示す.次に、下界定理を用いた丸棒部材と アンボンド部材の曲げ耐力式を提案し、前報その1で 設定した**仮説(1)**が成立することを示す.検討に用いた 実験資料は、逆対称曲げと一定せん断を受ける長方形 断面を有するアンボンド試験体64体¹⁾⁻¹⁵⁾と丸棒試験体 36体^{16)から抜粋}に関するものである.

2 PC 技術基準式¹⁷⁾の適合性

PC 技術基準式を丸棒部材とアンボンド部材に適用 すると,(1)式のようになる.

$$Q_{\mu} = (v \cdot b \cdot D \cdot \sigma_{R}/2) \{ \sqrt{(L/D)^{2} + 1 - (L/D)} \} \dots (1)$$

 $\Box \Box l \zeta, \quad v = \alpha \cdot L_r (1 + \eta_g)$

 $\begin{array}{c} \alpha=\sqrt{60/\,\sigma_B} \quad L_r=M\,/(2Q\cdot D) \\ \text{ttill}, \ \alpha\leq 1 \quad L_r\leq 1 \quad 0.65\leq \nu\leq 1 \end{array}$

Fig.1は最大荷重実験値を PC 技術基準式による計算 値で除したもの Q_{eu} / Q_u と部材のせいに対する内法ス パンの比 L/D, せん断補強筋比 p_w , コンクリート圧縮 強度 σ_B , 軸力比とプレストレスレベルの和 $\eta_o + \eta_8$ との 相関を調べたものである. これらの図より, PC 技術基 準式は PC 鋼材の引張降伏が先行した資料(図中, $O\Delta$) を含めると計算精度がかなり低下することが分かる.

3. 曲げ耐力式の提案

3.1 解析上の仮定

1) 解析の対象は,逆対称曲げと一定せん断を受ける 長方形断面を有する丸棒部材とアンボンド部材であり, 軸方向鋼材は図心軸に関して対称配筋されている.

Fig. 1 Applicability of Eq. (1) to Test Results

2) 軸方向力とコンクリートの応力は圧縮をプラス, 軸方向鋼材の応力は引張をプラスとする.

3) コンクリートのストレスブロックは長方形を仮

定し、高強度のものについては圧縮強度を低減する.

4) PC 鋼材は引張に,鉄筋は圧縮と引張に抵抗する.

3.2 材料強度

<u>コンクリート</u> 仮定 3)より, コンクリート強度 *σ*_{cu} は(2)式のように設定した.

$$\sigma_{cu} = \alpha \cdot \sigma_B \tag{2}$$

$$\alpha = \sqrt{60}/\sigma_B$$
 /2/20, $\alpha \le 1$

<u>軸方向鋼材</u>	軸方向力 <i>T</i> 。の範囲は (3) 式 で規定した.
$T_l \leq T_s \leq$	$\leq T_u$ (3)
(3) 式 中,丸	棒鋼材の上限値 T _u は,
$T_u = T_y$	
アンボンド銀	岡材の上限値 T_u は、アンボンド領域長 L_{ub}
に反比例し, 車	曲方向力の引張側への増加に伴って増加

1:日大理工, Nihon Univ. 2:日大院, Graduate Student of Nihon Univ. 3:日大学部, Student of Nihon Univ.

する. ここでは、これを勘案し、以下のように規定した. $N \ge 0$: $T_u = T_p$ ------(5a) N < 0: $T_u = T_p + (T_p - T_y) \cdot N/T_y$ ------(5b)

$$\Box \Box l \Xi, \quad T_p = P_e + (D/L_{ub}) \cdot a_g \cdot \Delta \sigma_t \le T_y \quad \dots \dots \quad (5c)$$

 $\Delta \sigma_t = 1000 N / mm^2$ $a_{pg} = 軸方向鋼材の総断面積$ 軸方向鋼材の軸方向力下限值 T_l は**仮定 4)**より,

PC 鋼材:
$$T_l = 0$$
 ------(6a)
鉄筋 : $T_l = -T_y$ -----(6b)

3.3 曲げ耐力式の誘導

アンボンド部材と丸棒部材の曲げ耐力式誘導に際し ては, Fig. 2(a)のような矩形ストレスブロックを仮定し た. Fig. 2(a), (b) より,曲げ耐力は下式で与えられる.

$$Q_u = \left(\frac{D}{L}\right) \cdot \left(1 - \frac{C_c}{\alpha \cdot N_o}\right) \cdot C_c$$
 (7)

ここに, $N_o = b \cdot D \cdot \sigma_B$, $C_c = ストレスブロック合力$ (7)式に極値を与える $C_c(= C_{cu})は \partial Q_u / \partial C_c = 0$ より,

$$C_{c\mu} = \alpha \cdot N_{\rho} / 2 \quad \dots \qquad (8)$$

(2) 式~(6) 式,(8) 式の条件下で(7)式に下界定理を適用すると,ストレスブロック合力は以下のようになる.

$$N < C_{cu} - T_u \qquad : \quad C_c = N + T_u \qquad \dots \qquad (9a)$$

$$C_{cu} - T_u \le N \le C_{cu} - T_l \qquad : \quad C_c = C_{cu} \qquad \dots \qquad (9b)$$

$$N > C_{cu} - T_l \qquad : \quad C_c = N + T_l \qquad \dots \qquad (9c)$$

曲げ耐力は(10) 式を(8) 式に代入すると求まる.

3.4 実験結果との比較

Fig. 3(a)~(**d**)は,最大荷重の実験値を提案曲げ耐力 式による計算値で除したもの $Q_{eu}/Q_u \ge L/D$, p_w , σ_B , $\eta_o + \eta_g \ge 0$ 相関を示したものであり,**Tab.1**は, Q_{eu}/Q_u の平均値と変動係数を示したものである.**Fig.3** \ge **tab. 1** より,アンボンド試験体,丸棒試験体とも,提案式 による計算精度はかなり高く,上記の各要因や曲げが 卓越するか否かにも依存しないことが分かる.これよ り,**仮説(1)**が成立することを示すことができた.

4. まとめ

1) PC 技術基準式の実験結果に対する適合性は,曲げ 降伏が先行したものを含めると,計算精度が低下した.

2) 提案式のアンボンド部材と丸棒部材の実験結果 に対する適合性は、せん断がかなり卓越したと見做さ れる試験体も含めて、かなり高かった.これにより、 仮説(1)が成立することを示すことができた.

Tab. 1 Accuracy of Proposed Equations					
п	т	Cv(%)	<i>F</i> (%)	n=資料数 m=平均值 Cv=変動係数	
100	1.03	8.59	1.0	F=誤差範囲±20%を外れる資料の割合	

【参考文献】

1) 鏡ほか:短スパン RC 梁の変形性能改善に関する研究(その4), 日本建築学会大会講演梗概集(構造IV), pp.849-850, 1994, 9

2) 飯田ほか:軸方向鋼材の付着の有無が鉄筋コンクリートのせん 断性状に及ぼす影響,日本建築学会構造系論文報告集(第 564 号) pp.103-108,2005 3) 浜原ほか:プレキャストプレストレストコ クリート有孔梁の力学的挙動に関する実験的研究, プレストレス トコンクリート第 41 巻(第 5 号) pp.14-19 4) 江頭ほか:アン ボンドPC圧着梁のせん断耐力確認実験(その1), (その2), 日本建築学 会学術講演梗概集 (構造IV), pp.857-860, 2013, 8 5) 高津ほか: アンボンド PC 有孔梁のせん断実験 (その 3) (その 4), 日本建築学会 大会学術講演梗概集(構造IV), pp.757-760, 2014, 9 6) 柳沼ほか:アンボンド PC 圧着梁のせん断耐力に関する実験的研究(その1), 日本建築学会学大会術講演梗概集 (構造IV), pp.723-724, 2015,9 7) 宮本ほか:アンボンド PCaPC 造梁の損傷評価を目的とした実験 的研究(その1), (その2), 日本建築学会大会学術講演梗概集 (構造IV), pp.733-426, 2015,9 8) 柳沼ほか:アンボンドPC 圧看梁のせん 断耐力に関する実験的研究,日本建築学会大会学術講演梗概集 (構造 IV), pp.769-770, 2016, 8 9) 島崎ほか:アンボンド PC 圧着梁の "降伏後のせん断耐力に関する実験的研究, 日本建築学会大会学 曲げ 術講演梗概集 (構造IV), pp.755-756, 2017, 8 10) 竹内ほか:アン ボンド PC 圧着梁のせん断耐力と損傷評価に関する研究,日本建築学 会大会学術講演梗概集 (構造IV), pp.775-776, 2018,9 11) 佐々木 ほか:アンボンド PCaPC 柱の構造性能に関する実験的研究(その1)-(その3), 日本建築学会大会学術講演梗概集 (構造IV), pp.769 -774, 12) 竹内ほか:アンボンド PC 圧着梁の部材耐力と曲げ 2018.9 降伏後の変形性能に関する研究、日本建築学会大会学術講演梗概集 13) 西山ほか: 高軸力下における (構造IV), pp.817-818, 2019,9 アンボンド PCaPC 柱の構造性能に関する実験的研究(その1),(その2), 日本建築学会大会学術講演梗概集 (構造IV), pp.805-808, 2019,9

14) 杉山ほか:アンボンド PCaPC 柱のせん断耐力に関する実験的 研究(その1)-(その3),日本建築学会大会学術講演梗概集 (構造IV), pp.809-814, 2019,9 15) 竹内ほか:アンボンド PC 圧着梁の曲 げ耐力後の変形性能に関する研究,日本建築学会大会学術講演梗概 集 (構造IV), pp.711-712, 2020,9 16) 石井ほか:PC 部材の せん断耐力に関する研究(その1)-(その3),日本建築学会大会学術講 演梗概集(構造IV), pp.783-787, 2019,9 17) 国土交通省国土技 術政策総合研究所 独立行政法人建築研究所:2009 年版プレストレ ストコンクリート造技術基準解説及び設計・計算例, pp126-129, 2009