鉛直荷重を受ける PC 骨組の地震後の継続使用性に関する解析的研究 その1 解析概要及び降伏型の確認

Analytical study of post-earthquake usability of vertically loaded PC skeletons

Part 1 Analysis outline and Verification of Yield type

○深谷勇介1, 佐俣夏子2, 福井剛3, 浜原正行3

*Fukaya Yusuke¹, Samata Natuko², Fukui Tuyoshi³, Hamahara Masayuki³

Abstract: Systematic analyses were performed on prestressed concrete frames to investigate the effect of the yield mechanism, the magnitude of vertical load, and structural type of the constituent members on the flexural behavior of the beams during and after earthquake.

1. はじめに

本研究は,解析水準の対象を第 I 種 PC として設定した1 層 1 スパンの骨組に対して,正負繰り返し漸増解析を行い,残留変形時における梁の曲げモーメントとたわみの挙動を明らかにした後,地震後の梁の曲げモーメントについてクライテリアとの対比を述べる.

2. 解析概要

2.1 解析に用いた骨組の概要と解析要因

Table 1に示すように解析に用いた骨組は,文献¹⁾と 同様,水平力*Q*と鉛直荷重*W*を受けるスパン 18m, 階 高 4.5m の 1 層 1 スパン骨組である.節点は,柱脚と梁 両端部,および梁スパンの 6 等分位置に設置し,全て の節点に後述する材端バネを設けた.

柱と梁の断面諸元についても文献¹⁾と同様で, テンド ンプロフィールも曲線配置とした. Figure 2 に部材の断 面諸元を示す. 検討に先立ち, PC 基規準^{2)~4)}に掲載され ている設計例の第 I 種~第Ⅲ種 PC 梁を対象に, 梁断面の 情報から設計クライテリアに関連した項目と PC 梁の構造 諸元について調査を行った.本論文では, この結果を基に第 I 種 PC に対象を絞り, 以下に示す Table 1 のように, 2 つ の解析要因と水準を設定した.

r:梁の各節点の長期曲げモーメント M_{Li}に対する
 同位置の第 I 種許容曲げモーメント M_{Ai} の比の
 最大値で(1)式より与えられる.

 $r = max \left(M_{Li} / M_{Ai} \right) \quad \dots \quad (1)$

m_y:梁端部降伏モーメント係数で(2)式より与え られる.

2.2 解析手法

解析には材端バネ法を用い,部材の逆対称モーメン トと回転角の関係には浜原・尹モデルを用いた.解析は, PC 不静定応力を算定した後,鉛直荷重 W を載荷し, その後に水平力 Q を正負繰返し載荷した.有効プレス トレス力は, PC 鋼材降伏荷重の60%とし,水平力の載 荷ルールは,層間変形角1/200 を基準値とし,その1, 2,3,4,5,6,7,8倍の変位振幅でそれぞれ正負2回 ずつ繰り返した.また,梁端部 PC 鋼材位置 dpeと鉛直荷 重 Wの決定方法は,文献²と同様とした.

Table 1 Parameters for analysis

	解析要因	水準		
	r	0.9	0.95	1.0
[m_y	0.08	0.10	0.12
	共通要因	梁幅 b に対するスラブ有効幅 B の比: $B/b=4$ PC 鋼材の降伏荷重 T_{py} に対する PC 鋼材と引 張鉄筋の降伏荷重 T_{ry} の和 $T_{py} + T_{ry}$ の比: $\lambda_t = T_{py}/(T_{py} + T_{ry}) = 0.9$		

1:日大理工・院(前)・海建 2:日大理工・学部・海建 3:日大理工・教員・海建

3. 上界定理による降伏型の判別

検討対象の骨組に想定される降伏機構は,全て梁降 伏型で,Figure3のようになる.上界定理による最大層 せん断力は,想定される機構から求まる水平力のうち の最小値として評価される.すなわち

まず、 $P_1=P_2$ となるときの鉛直荷重 $W \approx W_{cr}$ と定義 する.降伏型は、鉛直荷重によって判別可能であり、 $W \leq W_{cr}$ では、 $Q_u = P_1$ となり、対応する機構は、

Figure 3のタイプAの機構である.一方, $W>W_{cr}$ では, $Q_u=P_2$ となり,これはタイプBの機構に対応している.

今回のケースでは, r の値により降伏型が異なり変化が 表れた. r=0.9, 0.95 では, タイプA, r=1.0 では, タ イプBの降伏型となった.

Figure 3 Yield type

4. 層せん断力 Q と層間変形角 Rb

Table 2 は, $r \ge m_y$ の組み合わせ別に層せん断力 $Q \ge$ 層間変形角 R_b の関係を示したものである.

いずれの骨組も紡錘型の履歴ループを描いた.また, 最大層せん断力は,降伏機構の違いにより, r=1.0 が他 の2 ケースよりもわずかに小さくなっている.

5. 鉛直荷重載荷位置の曲げモーメント M と回転角 θ

Table 3 は、鉛直荷重載荷位置(節点 7)の曲げモー メント M と回転角 θ の関係に及ぼす $r \ge m_y$ の影響に ついて示したものである.この表より以下のことが指 摘できる.

r=0.9 では、いずれのケースでも未降伏なのに対し て、r=1.0 では、正側で降伏していることが分かる.r= 0.95 では、上界定理による降伏型は、タイプAである にも関わらず、鉛直荷重載荷位置では、正側で降伏し ていることが分かる.これは、部材の復元力特性におけ る第3勾配の影響により、梁両端に加えてこの位置で もヒンジ(梁スパン内ヒンジ)が新たに形成されたた めである.このヒンジによる塑性回転角は、(その2)で 後述するたわみの増加傾向に影響を及ぼす.

6. まとめ

PC 基規準²⁾⁻⁴⁾に掲載されている設計例の第 I 種~
 第Ⅲ種 PC 梁を対象に,設計クライテリアに関連した項

目と PC 梁の構造諸元について行った調査より,第I 種 PC を解析対象とした2つの解析要因を設定した. 2) 解析対象の骨組の降伏機構は,梁両端ヒンジ(タイ プA),梁片端 + スパン内ヒンジ(タイプB)の2つと したが,大変形時において,梁両端部に加えてスパン内 ヒンジも生じるケースを含んでいること示した.

【参考文献】

- 浜原正行,福井剛,内田龍一郎,矢田光輝:地震時及び地 震終了後の PC 骨組の力学的挙動に関する解析的研究, 日本建築学会論文報告集,2019.9
- 2) 国土交通省国土技術政策総合研究所,独立行政法人建築 研究所:2009 年度版 プレストレストコンクリート造 技術基準解説及び設計・設計例
- 3) 日本建築学会関東支部:プレストレストコンクリート構造の設計
- 4) 日本建築学会:プレストレスト鉄筋コンクリート(Ⅲ
 種)PC構造設計・施工指針・同解説

	r = 0.9	r = 0.95	r = 1.0
$m_y = 0$ $\cdot = 0$ $\cdot = 8$	$\begin{array}{c} Q(kN) \ 2500 \\ 1500 \\ -4 \\ -4 \\ -2500 \end{array} \begin{array}{c} 2 \ 4 \\ R_b(\%) \end{array}$	$\begin{array}{c} Q(\mathbf{kN}) & 2500 \\ 1500 \\ -4 \\ -4 \\ -4 \\ -2500 \end{array} \begin{array}{c} 2 \\ R_{b}(\%) \\ -2500 \end{array}$	$\begin{array}{c} Q(\mathrm{kN}) \ 2500 \\ 1500 \\ -4 \\ -4 \\ -2500 \end{array} \begin{array}{c} 2 \\ R_b(\%) \\ -2500 \end{array}$
$m_y = 0$ \cdot 1 0	$\begin{array}{c} Q(\mathbf{kN}) \ 2500 \\ 1500 \\ -4 \\ -4 \\ -2500 \\ -2500 \end{array} \begin{array}{c} 2 \\ 2 \\ R_b(\%) \end{array}$	$\begin{array}{c} Q(kN) 2500 \\ 1500 \\ -4 \\ -4 \\ -2500 \\ -2500 \end{array} \begin{array}{c} 2 \\ 4 \\ -2 \\ -2 \\ -2500 \end{array}$	$\begin{array}{c} Q(\mathrm{kN}) \ 2500 \\ 1500 \\ -4 \\ -4 \\ -2500 \\ -2500 \end{array} \begin{array}{c} & & \\ & \\ & & \\$
$m_y = 0$ \cdot 1 2	Q(kN) 2500 1500 -4 (200) -4 (200) -4 (200) -4 (200) -4 (200) -4 (200) -2 (200) -4 (200) -2	$\begin{array}{c} Q(\mathbf{kN}) 2500 \\ 1500 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ $	$\begin{array}{c} Q(\mathbf{kN}) \ 2500 \\ 1500 \\ -4 \\ -4 \\ 11 \\ 12 \\ R_b(\%) \end{array}$

Table 2. Relationship Between Q and R_b

Table3. Relationship Between M_7 and θ_7

	<i>r</i> = 0.9	<i>r</i> = 0.95	<i>r</i> = 1.0
$m_y \\ 0 \\ \cdot \\ 0 \\ 8$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2000 \\ 1500 \\ 1000 \\ 500 \\ 0 \\ \cdot 500 \end{array} \xrightarrow{M_7(kNm)} \\ \theta_7(\%) \\ \theta_7(\%) \\ 0.5 \end{array}$	$\begin{array}{c} 2000\\ 1500\\ 1000\\ 500\\ 0\\ -500\end{array} \qquad \begin{array}{c} M_7(\rm kNm)\\ \theta_7(\rm kN$
m_y 0 · 1 0	$\begin{array}{c} 2500 \\ 2000 \\ 1500 \\ 500 \\ 500 \\ 0 \\ -500 \\ 0 \\ 0.500 \\ 0 \\ 0.501 \\ \end{array} \begin{array}{c} M_7(kNm) \\ 0 \\ \theta_7(\%) \\ \theta_7(\%) \\ 0 \\ 0.5 \\ 1 \end{array}$	$\begin{array}{c} 2500\\ 2000\\ 1500\\ 500\\ 0\\ -500\\ 0\\ -500\\ 0\\ 0\\ 0\\ -500\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 2500\\ 2000\\ 1500\\ 1000\\ 500\\ 0\\ -500\\ \end{array} \begin{array}{c} M7(kNm)\\ \theta_7(\%)\\ \theta_7(\%)\\ 0\\ 0.5\\ 1 \end{array}$
m_y 0 \cdot 1 2	$\begin{array}{c} 3000 \\ 2000 \\ 2000 \\ 1500 \\ 1000 \\ 500 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 3000 \\ 2500 \\ 2000 \\ 1500 \\ 1000 \\ 500 \\ 0 \\ -500 \\ 0 \\ 0 \\ -500 \\ 0 \\ 0 \\ -500 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0 \\ -50 \\ -50 \\$	$\begin{array}{c} 3000\\ 2500\\ 1500\\ 1000\\ 500\\ -500\\ 0\\ -500\\ 0\\ 0.5\\ 1 \\ 1.5 \\ 1.5 \end{array}$