崩壊形の異なる RC 造系建物の制震補強設計スタディー —その2 層崩壊する SRC 造 10 階建て建物の検討— Seismic Retrofit Design Study Targeted at Buildings with Different Collapse Mechanisms Part2 Story Collapse Mode SRC 10-Story Building

○加藤百華², 村上航太¹, 亘健太朗¹, 山崎康雄³, 北嶋圭二⁴, 中西三和⁴, 安達洋⁵ *Momoka Kato²,Kota Murakami¹,Kentaro Watari¹,Yasuo Yamasaki³,Keiji Kitajima⁴,Mitsukazu Nakanishi⁴,Hiromi Adachi⁵

Abstract: This study is related to the seismic retrofit design method by the equivalent linearization method. This report shows the results of a seismic retrofit design study for a 10-story SRC building that story collapses.

1. はじめに

1995年の兵庫県南部地震では、旧耐震基準で設計された多くのRC造およびSRC造建物で中間の層のみが崩壊するというケースがみられた^[4]。旧耐震基準で設計された建物は現在でも存在し、層崩壊する建物の耐震補強の必要性が求められる。そこで本報では、層崩壊するSRC造10階建て建物を対象に制震補強設計スタディーを実施し、本設計法の適用性を確認する。

2. 制震補強設計スタディー

本報も前報と同様に、構造特性値および必要ベース シア係数の算定方法が異なる2ケース(A, B)について 制震補強設計スタディーを実施し、比較検討する。

a) 建物概要および解析概要

検討対象建物は,SRC 造 10 階建て建物で,6 層以下 が SRC 造で7 層から RC 造に切り替わる。建物の基準 階伏図および軸組図を Fig.1, Fig.2 に示す。補強検討は, 前報と同様に,制震部材にブレース型弾塑性ダンパー を用いることを前提として行う。

なお,本報での解析方法および各値の計算方法は全 て,前報と同様とする。

b)静的増分解析結果および構造特性値の算定

静的増分解析結果を Fig.3 に示す。Fig.3 より,検討 対象建物は,SRC 造と RC 造が切り替わる 7 層の柱が せん断破壊し,層間変形角 1/150rad 程度で層崩壊する 建物である。そこで,目標性能は 7 層の層崩壊を防ぐ こととし,補強目標層間変形角を 1/200rad と設定した。

各ケースの構造特性値の算定結果を Table1 に示す。 また,各ケースの構造特性値と検討用地震動の応答ス ペクトルを重ねて Fig.4 に示す。前報の6 階建て建物同 様,代表変位(S_d)は caseB が caseA より大きい値とな っている。さらに本報10 階建て建物は、ベースシア加 速度変換値(S_a)も caseB が大きい値となっている。ま た,代表変位(S_d)および加速度変換値(S_a)ともに caseA と caseB の差異が前報より大きいことがわかる。これ は,層崩壊する7層が他層より変位の増加率が大きい ことに起因している。前報のFig.4より,全体崩壊形の 建物はどこかの層が目標変位に到達した際の各層の層 せん断力は,各層目標変位時の層せん断力に近い値と なっているのに対し,層崩壊する本建物は,変形が7層 に集中するため,7層が目標変位に到達した際,他層の 変位は進行が大きくない。そのため,両ケースの変形 分布に大きな差があり,構造特性値に差異が生じた。

Table1 Structure characteristic value					
case	ベースシア係数	有効質量比	加速度Sa	変位Sd	等価周期
	[-]	[-]	[cm/sec2]	[cm]	[sec]
Α	0.18	0.68	237	7.3	1.11
В	0.22	0.78	273	10.4	1.22

1:日大理工・院(前)・海建 2:日大理工・学部・海建 3:西松建設株式会社 4:日大理工・教員・海建

5:日大名誉教授

c) 必要付加減衰量および必要ベースシア係数の算定

制震補強建物の必要減衰性能(h)および必要付加減 衰量(h_d)の算定結果を Table2 に示す。必要減衰性能(h) は両ケースで ELCENTRO-NS 波に対し最大値となり, 必要付加減衰量(h_d)は caseA が caseB に比べ 12%大き い値であった。これは, Fig.4 で明らかなように,構造 特性値 caseA と構造特性値 caseB の代表変位(S_d)に差 があるためである。

各ケースの縮約1自由度系の制震ダンパー必要量 (Q_d/Q_f)および必要ベースシア係数($_{RCB}$)の算定結果を Table3に示す。前報の式(5)より、ダンパー塑性率を8 とする本ケーススタディーでは、制震ダンパー必要量 (Q_d/Q_f)は必要付加減衰量(h_d)に比例する。caseA の必 要付加減衰量(h_d)が caseB の 2.2 倍であるため、caseA の制震ダンパー必要量(Q_d/Q_f)も caseB の 2.2 倍となっ た。また、必要ベースシア係数($_{RCB}$)を算定する際のベ ースシア係数(C_B)は、前報の全体崩壊形の建物はほぼ 同程度の値であるが、層崩壊する本建物は、caseB で想 定する層せん断力が caseA に比べて大きいため、caseB のベースシア係数(C_B)が大きく算定された。そのため、 制震ダンパー必要量(Q_d/Q_f)は両ケースで2倍以上異な るが、制震補強建物の必要ベースシア係数($_{RCB}$)はほぼ 同程度の値が算定された。

d) 各層の制震ダンパー量の算定

各層の制震ダンパー量(Q_{di})の算定結果をTable4に示 す。前報同様,本報 10 階建て建物も制震補強建物の必 要ベースシア係数($_{R}C_{B}$)が caseA と caseB で同程度であ ったため,各層の制震ダンパー量(Q_{di})も同程度となっ ている。

3. 時刻歴応答解析

Fig.5 に時刻歴応答解析結果を示す。既存建物(無補強時)の応答は7層の変形が進み層崩壊の様相を呈しているが、制震補強建物は7層の変形が抑えられ、各層とも補強目標層間変形角の1/200rad程度以下に応答が収まっていることが確認できる。なお、当然のことであるが、各層の制震ダンパー量(Q_{di})が同程度の両ケースの応答値は、ほぼ同程度の応答を示している。

4. まとめ

本報では,層崩壊する SRC 造 10 階建て建物を対象 に制震補強設計スタディーを実施し,本設計法の適用 性を確認した。前報および本報で,崩壊形が異なる RC 造系既存建物に対しても,本設計法が適用可能である ことを確認できた。また, caseA と caseB で異なる構造 特性値を用いても,制震補強建物の必要ベースシア係 数がほぼ同程度の値に算定されることがわかった。 5. 参考文献

- [1] 倉本ほか:「制振デバイスを有する RC 造建築物の
 等価1自由度系縮約と応答予測」,日本建築学会大会
 学術講演梗概集,2004.8
- [2] 北嶋, 歌田ほか:「等価線形化法による制震補強設計法
 に関する研究」,日本建築学会大会学術講演梗概集, pp.377-382,2018.9
- [3] 構造計画研究所: RESP-F3T, RESP-D

15%

в

[4] 日本建築学会:「阪神・淡路大震災と今後のRC構造設計、特徴的被害の原因と設計への提案」,1998.10

Table2 Demand damping performance				
case	ELCENTRO	TAFT	HACHINOHE	h _d
Δ	27%	16%	17%	22%

9%

10%

Table3 Required base shear coefficient

11%

case	必要付加 減衰量h _d	制震ダンパー 必要量Q _d /Q _f	ベースシア 係数C _B	必要ベースシア 係数 _R C _B
А	0.22	0.47	0.18	0.266
В	0.10	0.22	0.22	0.270

Table4 Damper shear force

層	主架構 Q _{fi}	caseA		caseB		
		制震補強	ダンパー	制震補強	ダンパー	
		$Q_{fi} + Q_{di}$	Q _{di}	$Q_{\rm fi} + Q_{\rm di}$	Q _{di}	
	[kN]	[kN]	[kN]	[kN]	[kN]	
10	3,998	4,320	322	4,389	391	
9	6,052	7,450	1,398	7,568	1,516	
8	7,315	10,091	2,776	10,251	2,936	
7	8,455	12,301	3,846	12,497	4,042	
6	10,176	14,548	4,372	14,780	4,603	
5	12,277	16,426	4,149	16,687	4,410	
4	14,161	18,090	3,929	18,377	4,216	
3	16,766	19,553	2,787	19,864	3,098	
2	19,705	20,951	1,245	21,284	1,579	
1	21,262	22,250	988	22,604	1,342	

