B-7

柱主筋および補強筋が異なる RC 造十字形柱梁接合部の挙動に関する研究

Experimental Study on RC Interior Column-Beam Joint with Different Strength Ratio and/or Reinforcement

今津祥地郎1,北嶋圭二2,中西三和2,安達洋3 Imadu Shojiro¹, Kitajima Keiji², Nakanishi Mitsukazu² Adachi Hiromi³

Abstract: This paper presents Column-Beam Joint Moment.

1. はじめに

現在、柱梁接合部は接合部降伏による強度低下率βi を確保することで、梁曲げ降伏型の破壊が先行すると されている。強度低下率βiは接合部降伏破壊時の節点 モーメント Miu と梁の危険断面位置での曲げ終局モー メント時の節点モーメント Mbu' の比で求まるが, Mju の精算式((1)式)[1]は計算が複雑で設計因子の把握が困 難であるため,略算式である(2)式[2]が使われる。(2)式 を用いた強度低下率βjの算出には,柱梁強度比,接合 部横補強筋、アスペクト比などが影響を及ぼす。

先行研究[3]では柱梁強度比の影響を確認することを 目的とし, 柱梁強度比 1.2(CBR1.2), 1.5(CBR1.5)の RC 造十字形柱梁接合部を対象に載荷実験を行った。両試 験体とも最終破壊性状は接合部降伏破壊の様相を呈し ており,部材角1/50rad以降の繰返し載荷において,接 合部の膨張が生じていることを明らかにした。

このような背景から、柱梁強度比、接合部内の補強 筋の影響を確認することを目的とし、先行研究[3]の CBR1.5 を基準に、柱主筋強度および本数を変えること で柱梁強度比を 1.9 にした CBR1.9, 接合部の変形を抑 えるため、接合部横補強筋強度を約半分にして補強筋 量を2倍にしたCBR1.5H,および接合部横補強筋は高 強度のまま補強筋量を 1.5 倍にし、接合部内の補強筋 を縦方向にも配置した CBR1.5V に対して載荷実験を

行った。試験体の関連を Fig.1 に示す。

CBR1.9, CBR1.5V の最終破壊性状は接合部降伏破壊 の様相を呈していた。一方で CBR1.5H の最終破壊性状 は梁曲げ降伏破壊の様相を呈していた。接合部横補強 筋の剛性をあげ、接合部の変形を抑制することで破壊 性状に差異が生じた^[4]。本報では、接合部横補強筋の剛 性のみが異なる CBR1.5 と CBR1.5H を対象とし, 強度 低下率、および接合部モーメントの比較を行う。

$$\begin{split} M_{j} &= \frac{1}{2} \left(g_{b} - \frac{T_{b1} + T_{h}/2 - V_{c}/2}{b_{c} D_{b} \beta_{3} f_{c}} \right) \left(T_{b1} + \frac{T_{h}}{2} - \frac{V_{c}}{2} \right) D_{b} \\ &+ \frac{1}{2} \left((1 - g_{b}) - \frac{T_{b2} + T_{h}/2 + V_{c}/2}{b_{b} D_{b} \beta_{3} f_{c}} \right) \left(T_{b2} + \frac{T_{h}}{2} + \frac{V_{c}}{2} \right) D_{b} \\ &+ \frac{1}{2} \left(g_{c} - \frac{T_{c1} + (N_{c} + T_{m})/2 - V_{b}/2}{b_{c} D_{c} \beta_{3} f_{c}} \right) \left(T_{c1} + \frac{N_{c} + T_{m}}{2} - \frac{V_{b}}{2} \right) D_{c} \\ &+ \frac{1}{2} \left((1 - g_{c}) - \frac{T_{c2} + (N_{c} + T_{m})/2 + V_{b}/2}{b_{b} D_{c} \beta_{3} f_{c}} \right) \left(T_{c2} + \frac{N_{c} + T_{m}}{2} + \frac{V_{b}}{2} \right) D_{c} \\ &+ g_{b} \frac{V_{c}}{2} D_{b} + g_{c} \frac{V_{b}}{2} D_{c} \end{split}$$
(1)

$$\beta_{j} = \left\{ 1 - \frac{\sum A_{t}f_{y}}{b_{j}D_{b}F_{c}} + \frac{1}{2} \left(\frac{M_{cu} + M'_{cu}}{M_{bu} + M'_{bu}} - 1 \right) + \frac{1}{4} \left(\frac{\sum A_{jw}f_{jy}}{\sum A_{t}f_{y}} \right) \right\} \xi_{r}$$
(2)

bb	:梁幅	bc	:柱幅		
Db	:梁せい	Dc	:柱せい		
Tb1,Tb2	:梁主筋の応力	Tc1,Tc2	:柱主筋の応力		
Th	:接合部横補強筋の応力				
Tm	:柱中段筋の応力	Nc	:柱軸力		
Vb	:梁のせん断力	Vc	:柱のせん断力		
Mj	:接合部の抵抗モーメント				
gb	:梁の引張主筋と圧縮側主筋の応力の				
	重心間距離の梁せいに対する比				
gc	:柱の引張主筋と圧縮	側主筋の応	力の		
	重心間距離の梁せい	に対する比			
fc	:コンクリートの圧縮	i強度			
β3	:コンクリートストレ	スブロック(の高さの		
	コンクリート圧縮強	度に対すると	Ł		

1:日大理工・院(前)・海建 2:日大理工・教員・海建 3:日大・名誉教授

2. 最大耐力と強度低下率の関係

Table1 に最大耐力時節点モーメント(以降,最大耐 力)および強度低下率の一覧を示す。節点モーメント は,梁端部のロードセルで測定した梁せん断力から算 出した左右の梁の節点位置でのモーメントの和であり, 計算値は梁の危険断面が曲げ終局強度に至る時の節 点モーメントである。強度低下率βj1,βj2はそれぞ れ略算式((2)式),精算式((1)式)を用い算出したものであ る。βj2 の算出における鉄筋の条件として,柱と梁の 引張主筋(Tb1, Tc1),接合部横補強筋(Th),および柱中 段筋(Tm)は降伏,圧縮側の梁と柱の主筋(Tb2, Tc2)は抵 抗モーメントが最大となるような応力が生じると仮定 し,Tb2, Tc2をそれぞれ(3)式,(4)式とする。

両試験体とも最大耐力は計算値の 1.1 倍程度であり, βj2 と近い値であった。CBR1.5 の破壊性状は接合部降 伏破壊の様相を呈しており,破壊性状と計算結果が整 合している。一方で CBR1.5H は梁曲げ降伏破壊の様相 を呈していたにもかかわらず,最大耐力/計算値とβj2 に差異はなく,最大耐力は接合部降伏破壊時を仮定し た計算結果と近い値であった。

3. 最大耐力時の接合部モーメント

Table2 に最大耐力時の接合部モーメント一覧を, Fig.3 にひずみゲージ取り付け位置を, Fig.4 に接合部内 鉄筋のひずみ-部材角関係を示す。接合部モーメント は(1)式を用い,実験で得た最大耐力時のひずみから式 中の鉄筋の応力を求め,算出した。

最大耐力時における CBR1.5 と CBR1.5H の接合部モ ーメントは近い値であり,最大耐力の約6割であった。 接合部降伏破壊時の節点モーメントの算出では,鉄筋 の条件として柱の引張主筋,柱中段筋及び接合部横補 強筋は降伏と仮定したが,実験結果では両試験体とも 最大耐力時にそれらの鉄筋の降伏は生じていなかった。

両試験体の破壊性状に違いはあったが,接合部内の 梁主筋(B1,B2),柱主筋(C1)および柱中段筋(M1,M2) のひずみ挙動は大きな差異がなく,最大耐力時の引張 力も近い値である。また,接合部横補強筋(H1)のひずみ 挙動には差異があるが,剛性が約2倍異なるため,引 張力は近い値となり,鉄筋の引張力から算出される接 合部モーメントは近い値となった。

4. まとめ

・CBR1.5H は接合部横補強筋の剛性をあげ,接合部の 膨張を抑制することで,破壊性状に差異は生まれた が,最大耐力は接合部降伏破壊時の節点モーメント と近い値であった。

Photo. 1 Column-Beam Joint Failure Condition Table1 Experiment Results

	実験値 [kNm]	計算値 [kNm]	実験値 計算値	強度低下率 βj1	Mju∕Mbu' βj2		
CBR1.5	237	216	1.10	1.41	1.12		
CBR1.5H	241	216	1.12	1.36	1.10		
$\frac{1}{T_{h}} = \frac{1}{T_{h}} \frac{1}{V_{c}} $							

$$T_{b2} = \frac{1}{2}(1 - g_b)b_b D_b \beta_3 f_c - \frac{\gamma_n}{2} - \frac{\gamma_c}{2}$$
(3)

$$T_{c2} = \frac{1}{2}(1 - g_c)b_b D_c \beta_3 f_c - \frac{N_c + N_m}{2} - \frac{V_b}{2}$$
(4)

Fig. 4 Reinforcing bar strain-Rotation Angle

・両試験体とも、ひずみから求めた接合部モーメント は最大耐力の6割程度であった。

・CBR1.5, CBR1.5H は最大耐力時における接合部内鉄 筋の引張力に差異がなく,接合部モーメントも近い 値となった。

参考文献

- [1]塩原等:鉄筋コンクリート造十字形柱梁接合部の終局モーメント 算定法,日本建築学会構造系論文集, Vol.75, No.657, pp.2027-2035, 2010
- [2]塩原等:鉄筋コンクリート柱梁接合部における接合部降伏の終局 強度の実用的算定法,日本建築学会大会学術講演会梗概集, pp.389-390.2014
- [3]草川和広他:RC 造建物のスラブ付き十字形柱梁接合部の多数回繰返し載荷実験(1,2),日本建築学会大会学術講演会梗概集,pp.127-130,2019
- [4]今津祥地郎他:柱梁強度比及び接合部内の配筋が異なる RC 造十字 形柱梁接合部の実験的研究(1,2), 日本建築学会大会学術講演会梗概 集, pp.397-340,2020