C-1

パルスレーザ堆積法によって c 面サファイア基板上に作製した エピタキシャル YbFe2O4/Fe3O4 積層膜の結晶構造評価および面内電気特性 Crystal Structure Evaluation and In-plane Electric Properties of Epitaxial YbFe2O4/Fe3O4 Multilayers on *c*-plane Sapphire Substrates Prepared by Pulsed Laser Deposition Method

○平岡恭也¹, 寺地勇博¹, 齋藤凌輔², 岡本卓也¹, 陳曦², 岩田展幸³ *Kyoya Hiraoka¹, Takehiro Teraji¹, Ryosuke Saito², Takuya Okamoto¹, Xi Chen², Nobuyuki Iwata³

Abstract: we prepared YbFe₂O₄ films and YbFe₂O₄/Fe₃O₄ multilayer films on surface treated *c*-plane sapphire substrates using pulsed laser deposition (PLD) method. From result of X-ray diffraction (XRD) 2θ - θ spectrum, the full width at half maximum of YbFe₂O₄(0009) peak was 1.11° and 0.951°, indicating that Fe₃O₄ buffer improved the YbFe₂O₄ thin film quality.

1.背景・目的

 RFe_2O_4 (R=Sc, In, Y, Ho-Lu) は電子型強誘電体として 知られている^[1-2].また,反強磁性,フェリ磁性相の共存 の報告もある^[3]. RFe_2O_4 の結晶構造を Figure 1 に示す. RFe_2O_4 はR と O が作る三角格子層 1 枚(R 層)と Fe と O が作る三角格子層 2 枚(W 層)が c 軸方向に交互に積層 した層状化合物である.電子型強誘電体は一般に広く 知られているイオン変位に起因する強誘電体とは異な り,価数の異なる鉄イオン Fe²⁺と Fe³⁺が秩序化するこ とで,電気双極子モーメントを形成し(反)強誘電性を示 す.W 層では Fe²⁺と Fe³⁺が同数存在し,平均価数は+2.5 である.三角格子状に Fe²⁺と Fe³⁺が配置する際に起こる 電荷フラストレーションが原因で, [110]方向に 3 倍周 期の超格子構造が形成され, Fe イオンが秩序配置する. この秩序化によって,電気分極が c 軸方向に発生する.

*R*Fe₂O₄ は電子が直接電気分極を担うため,イオン変 位型強誘電体と比べ,高速かつ低エネルギーで分極反 転が可能で繰り返し耐久性が高いことが期待される. さらには Fe イオンがスピン秩序も担うため電気磁気 効果も観測されている^[4]. このような *R*Fe₂O₄の特性は, 電気秩序の融解を利用した相変化メモリ,電界印加型 磁気メモリ,反強磁性体スピントロニクスなどへ応用 可能である.この様な電子デバイス応用に向け,本研 究では,*Y*bFe₂O₄薄膜の作製を行った.

本研究では工業的に多数使用されている c 面サファ イア (c-Al₂O₃)を基板に用い, Fe₃O₄をバッファー層お よび下部電極層として用いる. Al₂O₃[110], YbFe₂O₄[110]との格子ミスマッチは-27.4%, Fe₃O₄[-211], YbFe₂O₄[110]との格子ミスマッチは 0.70%, Fe₃O₄[-211], Al₂O₃[110]との格子ミスマッチは 8.19%である^[5]. なお Al₂O₃, YbFe₂O₄ は六方晶系であり, Fe₃O₄ は立方晶系で ある.

Figure 1 RFe_2O_4 の結晶構造. FeA, FeB, Fec はそれぞれ異なった場所に位置する Fe 原子を表す. 鉄の三角格子が 2 枚重なった層(W層)は価数の異なる Fe 原子(Fe²⁺, Fe³⁺)が秩序配置することで微視的な電気分極を持つ.

2. 実験方法

本研究では c-Al₂O₃ 基板上にパルスレーザ堆積 (Pulsed Laser Deposition: PLD)法を用いて YbFe₂O₄単相 膜および YbFe₂O₄/Fe₃O₄ 積層膜を作製した.基板洗浄 としてアセトンで 5 分, 15 分, エタノールで 5 分間の 超音波洗浄を行い,窒素ブローを行うことで基板表面 の異物を除去した.その後, 12 時間, 1050°C で大気アニ ールを行なった.成膜条件を Table Iに示す.YbFe₂O₄薄 膜作製時には,成膜前に O₂ 分圧 1.0×10^{-3} Pa を保ちつ つヒータ温度を 900°C まで昇温し,成膜後に成膜時の 酸素 分圧を保ちながらヒータ降温を行った. YbFe₂O₄/Fe₃O₄ 積層膜作製時には, Fe₃O₄ 薄膜評価のた めに Fe₃O₄ 成膜後に PLD 装置から取り出した.Fe₃O₄ 薄

1:日大理工・院(前)・電子 2:日大理工・学部・電子 3:日大理工・教員・電子

膜評価後,試料を再度 PLD 装置内に設置し, YbFe₂O₄ 薄 膜作製と同様の手順で成膜することで YbFe₂O₄/Fe₃O₄ 積層膜を作製した.

Table 1 成膜条件			
基板	YbFe ₂ O ₄	Fe ₃ O ₄	YbFe2O4/Fe3O4
ヒータ温度[℃]	850	350	850
使用レーザ	KrF(248 nm)		
レーザ周波数[Hz]	2	5	2
レーザエネルギー密度[J/cm ²]	1.24	3.07	1.24
成膜圧力[Pa]	4.0×10 ⁻⁵	1.0×10 ⁻³	9.0×10 ⁻⁵
O ₂ 分圧[Pa]	1.0×10 ⁻⁵	1.0×10 ⁻³	1.3×10 ⁻⁵
成膜時間	60 min	60 min	60 min
照射面積[mm ²]	2.4	0.91	2.4
使用ターゲット	YbFe ₂ O ₄	Fe	YbFe ₂ O ₄

結果・考察

Figure 2 に YbFe₂O₄表面像を示す. バッファ層として Fe₃O₄を用いることで,三方晶である YbFe₂O₄の3回回 転軸という構造的対称性によって特徴的に見られる, 60° および 120° のファセットな面がより明確に観測 された. また平均面粗さ(*Ra*)において YbFe₂O₄ 単相膜 では 3.98 nm であるのに対して YbFe₂O₄/Fe₃O₄積層膜で は 1.20 nm であり,高低差が劇的に低減されたことが わかった. さらに、ラインプロファイルの結果より, YbFe₂O₄ 単相膜では確認できなかった 1/3unit のステッ プが YbFe₂O₄/Fe₃O₄ 積層膜では広範囲で確認できたこ とから,YbFe₂O₄薄膜が層状成長していると考えている。

Figure 2 (a) YbFe₂O₄単相膜表面像, (b) YbFe₂O₄/Fe₃O₄積層 膜表面像. YbFe₂O₄単相膜に比べて YbFe₂O₄/Fe₃O₄ 積層膜で は 60°の内角をもつファセット面が明確に確認でき,平均 面粗さ(*Ra*)も 3.98 nm から 1.20 nm へと大幅に改善された.

Figure 3 に YbFe₂O₄/Fe₃O₄ 積層膜の XRD-2 θ ・パタ ーンを示す. YbFe₂O₄ 単相膜の YbFe₂O₄(0009)ピークの 半値幅が 1.1°であるのに対し, YbFe₂O₄/Fe₃O₄積層膜で は 0.95°であったため, Fe₃O₄バッファ層を挿入するこ とで,面直方向により均等な面間隔をもって積層した 格子の乱れが少ない結晶成長がなされていることがわ かった.

Figure 3 (a)YbFe₂O₄ 単相膜, (b) Fe₃O₄ 単相膜, (c)YbFe₂O₄/Fe₃O₄積層膜の XRD(2θ-θ 測定). ●が YbFe₂O₄, ▲が Fe₃O₄を示す回折ピークである. Fe₃O₄をバッファ層 として用いることで高次元側の *c* 軸配向 YbFe₂O₄ ピーク がより急峻に観測された.

4. まとめ

本研究では $c-Al_2O_3$ 基板上にパルスレーザー堆積法 を用いて YbFe₂O₄ 単相膜および YbFe₂O₄/Fe₃O₄ 積層膜 を作製し,薄膜表面状態を SPM-DFM 測定,結晶構造 を XRD 測定により評価した. Fe₃O₄ バッファ層を導入 することで YbFe₂O₄ 薄膜表面状態が劇的に改善され, 1/3unit のステップテラス構造が薄膜表面に確認でき た.また YbFe₂O₄単相膜に比べて YbFe₂O₄/Fe₃O₄積層膜 では結晶性の向上が確認できた.

5. 参考文献

[1] T. Nagata, *et al.*, Appl. Phys. Lett. **110** (2017) 052901. [2]
N. Ikeda *et al.*, Nature **436** 1136 (2005).

- [3] K. Fujiwara, et al., J. Phys. Soc. Jpn. 88 (2019) 044701.
- [4] T. Kambe et al., Phys. Rev. Lett. 110 (2013) 117602.
- [5] T. Fujii et al., Jpn. J. Appl. Phys. 57 (2018) 010305