パルスレーザ堆積法による Yttria-Stabilized Zirconia(YSZ) (111)基板を用いた YbFe2O4 積層膜の作製 Fabrication of YbFe2O4 multilayer Films Using Yttria-Stabilized Zirconia (YSZ) (111) by Pulsed Laser Deposition Method

○齋藤凌輔¹, 寺地勇博², 平岡恭也², 岡本卓也², 陳曦¹, 岩田展幸³ *Ryosuke Saito¹, Takehiro Teraji², Kyoya Hiraoka², Takuya Okamoto², Xi Chen¹, Nobuyuki Iwata³

Abstract: YbFe₂O₄ multilayer films are fabricated by pulsed laser deposition (PLD) method. YSZ (111) substrate was used to form the YbFe₂O₄ thin film, and the film growth condition of YbFe₂O₄ thin film were searched by comparing the presence or absence of Ar introduction. However, YbFe₂O₄ thin films were not grown on YSZ(111). Upon introduction of Ar, Fe₃O₄ and YbFeO₃ thin films are formed. When Ar wasn't introduced, Fe thin film is formed.

1.背景・目的

三角格子希土類鉄複電荷酸化物 RFe₂O₄(R=Y, Dy-Lu, Sc, In) は電子型強誘電体として知られている.電子型 強誘電体は従来の強誘電体とは異なり,イオン変位で はなく極性な電荷秩序に起因する強誘電性をもつ. RFe₂O₄の結晶構造を Figure 1 に示す. R と O が作る三 角格子層 1 枚(R 層), Fe と O が作る三角格子層 2 枚(W 層) が c 軸方向に交互に積層した層状化合物である.

Figure 1 RFe_2O_4 の結晶構造 $R \ge O$ が作る三角格子層 1 枚(R 層), Fe $\ge O$ が作る三角格子層 2 枚(W 層)が c 軸方向に交互に積 層した層状化合物. W 層は Fe²⁺ \ge Fe³⁺の秩序構造により微視的な 電気分極を持つ.

W 層において RFe_2O_4 の Fe イオンの平均価数は+2.5 で あり、 Fe^{2+} と Fe^{3+} が三角格子上に同数存在する. クーロ ン力により Fe^{2+} と Fe^{3+} が隣り合うことが安定であるた め、三角格子上で電荷フラストレーションが生じる. そのため、W層内で[110]方向にFe²⁺とFe³⁺が長距離秩 序を形成し、Fe 価数の違いによる微視的な電気分極を 生じる.このとき、電気分極を持つW層が強的に積層 する場合、強誘電性を発現するが、反強的に積層する 場合は反強誘電性を発現する[1-2].また、RFe₂O4は電 子が直接電気分極を担うため、イオン変位型強誘電体 と比べて速く低エネルギーで分極反転が可能で繰り返 し耐久性が高いことが期待され、さらにFe イオンがス ピン秩序も担うため電気磁気効果も観測されている[3].

このような *R*Fe₂O₄の特徴的な強誘電性・電気磁気効 果は強誘電体メモリや低消費電場駆動型メモリなどに 応用できる.そこで,デバイス応用のための第一段階 として *R*Fe₂O₄の薄膜化を目指している.

しかし *R*Fe₂O₄ の電荷秩序やそれに基づく物性は化 学当量性に非常に敏感で, Fe の高い揮発性のため薄膜 化が難しく報告も少ない. そこで比較的組成ズレの起 こりにくい Yb を *R* 原子として選択し, パルスレーザ 堆積法 (Pulsed Laser Deposition : PLD 法) による薄膜 化に取り組んでいる.

一般的に、薄膜作製を行う際、下地となる基板と積 層する薄膜間の面内格子定数のミスマッチが小さいほ ど格子ズレによるストレスを軽減でき、良質な結晶性 を持つ薄膜が作製可能である[4]. 先行研究で用いてき た c 面サファイア(c-Al₂O₃)基板では YbFe₂O₄ との格子 ミスマッチが-27.4%であった.一方、YSZ(111)基板を用 いることで格子ミスマッチを-4.59%にまで軽減できる ことを確認した. そのため、本研究では YSZ(111)基板 を用い、Fe₃O₄をバッファ層とする YbFe₂O₄ 積層膜の作 製を試みた.

1:日大理工・学部・電子 2:日大理工・院(前)・電子工学専攻 3:日大理工・教員・電子

2. 目的

結晶性が高く電荷秩序構造を持つ YbFe₂O₄の薄膜を Fe₃O₄ を成膜した YSZ(111)基板上に積層膜を作製する 際の条件を探索することを目的とする.

3. 実験方法

YSZ(111)基板をアセトン5分,15分,エタノール5 分間,超音波洗浄を行なった.その後,YSZ(111)基板を 1150℃大気中で3時間のアニール処理を行った.

成膜条件を Table I に示す. 試料 1,2 はともに YSZ(111)基板上にて,PLD 法により YbFe₂O₄ターゲッ トを用いて成膜を行ったものであり,相違点は成膜時 に Ar を用いたか否かである.ヒーター温度 850℃,レ ーザ周波数 2Hz,レーザエネルギー密度 1.24J/cm²,成 膜時間 60 min.,照射面積 2.448 mm²,マスクサイズ 108 mm²,酸素分圧が 1.3×10⁻⁵Pa とし,試料 1 では Ar を用 いず,試料 2 では Ar 分圧が 1.0×10⁻²Pa となるように Ar を導入しながら成膜を行った.

表面像の評価には走査型プローブ顕微鏡(SPM:日立 ハイテク SPA400, Nanonavi Station)を用いて Dynamic Force Mode にて測定を行なった.結晶構造の評価には, X線回折装置(D8 DISCOVER:BRUKER AXS)を用いた.

成膜条件		
試料名	試料1	試料2
ヒータ温度[°C]	850	850
レーザ周波数[Hz]	2	2
レーザエネルギー密度[J/cm ²]	1.24	1.24
背圧[Pa]	7.0×10^{-6}	1.10×10^{-5}
O ₂ 分圧[Pa]	1.3×10^{-5}	1.3×10^{-5}
Ar分圧[Pa]	なし	1.0×10^{-2}
成膜時間	60min.	60min.
照射面積[mm ²]	2.448	2.448
ターゲット	Yb124	Yb124

Table I 成膜条件

4. 結果・考察

Figure 2 に試料 1 および試料 2 の 2θ - θ パターンを示 す. 試料 1 では YbFe₂O₄の *c* 軸配向の結晶ピークが観 測できず, 45°,99°付近にそれぞれ Fe(0 1 1),Fe(0 2 2)の 結晶ピークが観測された. 試料 2 では 15° 付近にて YbFeO₃(0 2 2)の結晶ピークが観測され, 18°,37°,57°,79°,105°付近にそれぞれ Fe₃O₄(1 1 1),Fe₃O₄(2 2 2), Fe₃O₄(3 3 3), Fe₃O₄(4 4 4), Fe₃O₄(5 5 5)の Fe₃O₄ の結 晶ピークが観測された. Ar 導入を行ったときは、YbFeO₃ 薄膜および Fe₃O₄ 薄 膜が形成され、Ar 導入を行わなかったときは Fe 薄膜 が形成されたことから、Ar を用いることは積層膜の 成膜に有用であるといえる.ただし、本研究にて YbFeO₃ 薄膜が形成され、Fe イオンが揮発していたこ とから、YbFe₂O₄ を成膜するためには Fe イオンが揮発 しないように、Ar の導入量を増加させる必要がある.

Figure 2 試料 1,2 の 20-0 パターン 試料 1,2 はともに YbFe₂O₄//YSZ(1 1 1)であり,Ar 導入なしの試料 1 は 45°,99°付近で Fe の結晶ピークが確認された. Ar 導入ありの試料 2 は 15°付近 にて YbFeO₃の結晶ピーク, 18°,37°, 57°,79°, 105°付近に Fe₃O₄の 結晶ピークが確認された.

5. まとめ

YSZ(111)基板を用いて, Fe₃O₄ をバッファ層とした YbFe₂O₄積層膜の作製と評価を行なった. YbFe₂O₄ター ゲットを用いて成膜を行ったが, Ar 導入の有無に関わ りなく, YbFe₂O₄ 薄膜は形成されず, Ar 導入時には YbFeO₃ 薄膜, Fe₃O₄ 薄膜, Ar 非導入時には Fe 薄膜が 形成された.

6. 参考文献

[1] T. Nagata et al., Appl. Phys. Lett. 110(5) 052901 (2017).

[2] N. Ikeda et al., Nature (London) 436 1136 (2005).

[3] T. Kambe et al., *Phys. Rev. Lett.* **110**(11) 117602(2013).

[4] T. Fujii et al, *Japanese Journal of Applied Physics*, **57**, 010305(2018).