電極間を架橋する面内配向単層カーボンナノチューブの作製

Fabrication of In-Plane Aligned Single-Walled Carbon Nanotubes Bridging Electrodes

○小川恭正1,藤本佳奈2,山寺航平2,岩田展幸3

* Yasumasa Ogawa¹, Kana Fujimoto², Kohei Yamadera², Nobuyuki Iwata³

Abstract: In order to fabricate FETs using single-walled carbon nanotubes as channels, we aimed to fabricate singlewalled carbon nanotubes that bridge between electrodes. On the SiO2/Si substrate, the catalyst film was formed by the dip coating method, and SWNTs were grown by the CVD method. When lifted off after treatment by ozone, a plurality of SWNTs exceeding 5 μ m in length grew. By controlling the growth direction of SWNTs using artificial quartz substrates, it can be expected to produce SWNTs that bridge the electrodes.

1. 背景

近年の情報社会の中で,より小型かつ低消費電力な 半導体デバイスの需要は高まり続けている.この需要 に答えるために,従来のSiデバイスではなく新材料 を用いた半導体デバイスの研究が盛んに行われてい る.新材料の内,特徴的な電気特性やナノスケールの サイズ,形状から注目されている物質が単層カーボン ナノチューブ(Single Walled Carbon Nanotube :SWNT)で ある.電気特性は巻き方(カイラリティ)の違いにより, 半導体から金属的性質まで幅広く変化する.我々は, これらの性質を活かしSWNTsを用いた電子デバイス の作製を目指している.すでにSWNTsのみを用いた ナノチューブコンピュータは作製され,SWNTs-FET の数+GHz 動作も確認されているが,集積化や再現 性の問題等解決すべき課題が多数残っている[1-3].

電子デバイスに応用するため, SWNTs の成長位置, 方 向,密度,長さ,電気特性を同時に制御する必要があ る.特に,カイラリティ(電気特性)の制御は必須であ る.一般的には,電気特性を制御せずに多量の SWNTs を作製し分散剤に入れ金属性,半導体性に分離する方 法が主流である[4].しかし,この方法には電気特性を 制御するために SWNTs 作製後に追加の工程が必要,

分散剤が SWNTs に付着することによる SWNTs の品 質の低下,分離した SWNTs を1本1本配線する高度 な技術が必要といった課題がある.我々は,SiO₂/Si基 板上に化学気相成長(Chemical Vapor Deposition: CVD) 法を用いて SWNTs を成長させる際に波長 800 nm の 自由電子レーザー(Free Electron Laser: FEL)を照射す ることで,µm の範囲で特定の場所に半導体性 SWNTs を選択成長させることに成功している[5].この手法を 用いて SWNTs-FET を作製できれば,SWNTs の分離を 行う必要がないので,上記の課題を解決する新たな製 法として提案できる.しかし,カイラリティ以外に制 御すべき点として,人工水晶基板を利用し面内配向に 成功しているが、SWNTs の成長密度は低く, 長さも数 μm であり電極間を架橋する長さの SWNTs が作製で きていない[6].

そこで本研究では、フォトリソグラフィで基板にパ ターニングを行い、ディップコート法で金属触媒を基 板に成膜することで金属触媒が微粒子として基板に 担持され、高密度かつ電極間を架橋できるだけの長さ の SWNTs が成長すると考えた.

2. 目的

フォトリソグラフィでパターニングして触媒金属 を成膜することにより、高密度かつ電極間を架橋でき る長さの SWNTs を作製することを試みた.

3. 実験方法·条件·評価方法

SiO₂/Si 基板をアセトン溶液内で超音波洗浄 5 分間, 新しい溶液に入れ変えて 15 分間行った.続けて,エ タノール溶液内で超音波洗浄を 5 分間行った.基板を 取り出し,すぐに圧縮窒素で基板表面の液体を吹き飛 ばすことで清浄な表面を得た.

フォトリソグラフィによりパターンを形成した.ポ ジ型レジスト液(OFPR-800,東京応化工業会社名)を塗 布し,スピンコート装置を用いて 500 rpm で 5 秒間, 5000 rpm で 30 秒間処理を行った. 基板をホットプレ ートで 110℃,90 秒間加熱し,レジスト液を乾燥させ た.その後,パターンの上から紫外線を照射し,現像 液(NMD-W,東京応化工業)で現像を1分間,純水でリ ンスを1分間行った.さらに,基板をホットプレート, 120℃で2分間加熱し,基板を乾燥させた.

ディップコートに用いる溶液の作製条件を以下に 示す. Mo 溶液は、エタノール、100ml に[(C₂H₃O₂)₂Mo]₂ を 27 mg, Co 溶液はエタノール、100ml に C₄H₆Co₄・ 4H₂O を 51 mg 入れ、それぞれ 2 時間超音波攪拌する ことで作製した. この溶液を用いた、ディップコート の条件を以下に示す. UV オゾンクリーナーで 30 分の オゾン処理を行い、基板の濡れ性を良くした. フォト リソグラフィ時のレジスト膜を,沸騰させたアセトン で1分間超音波洗浄することでレジスト液を剥離し た.その後,エタノール,純水でリンスを行い,リフ トオフした(試料1). Mo溶液に2分浸漬し,2500 µm/sec で引き上げ,再度 Mo溶液に2分浸漬し,300 µm/sec で引き上げた.電気炉にて大気雰囲気中400℃で5分 アニールした.次に Co溶液に2分浸漬し,300 µm/sec で引き上げた.電気炉にて大気雰囲気中400℃で5min アニールした.その後リフトオフした(試料2).

ホットウォール型 CVD 装置(HW-CVD 装置)を用い て,SWNTの成長を試みた[7].図1に HW-CVD 法に よる詳細な成膜条件を示す.

CVD 後, 走査型プローブ顕微鏡(Scanning Probe Microscope: SPM)(原子間力顕微鏡・SPA-400・日立ハイ テクサイエンス)のダイナミックフォースモード (Dynamic Force Mode: DFM)により表面形状の測定を 行い, 触媒金属の付着状態および SWNT の成長を確認 した.

背圧 反応管:33.5Pa タンク:957Pa

図1 CVD条件.石英管内圧を1kPaで一定にし、Ar/H₂ガス雰囲気 中850℃まで20分で昇温を行った.その後、Ar/H₂ガス雰囲気中で 30分間還元処理を行った.炭素源であるC₂H₅OHは、石英管還元中 にタンクをホットプレートで設定温度300℃で温めた.C₂H₅OHの 流入経路をリボンヒーターで覆うことで、石英管に流入される前に 液体になってしまうことを防いだ.エタノールの使用量は、SWNTs 成長後にタンクに残ったエタノールをビーカーに移し、残量を確認 することで測定した.石英管還元後、気体となっているC₂H₅OHを 流入し、SWNT 成長を10分間行った.その後C₂H₅OH流入を止めて 再びAr/H₂混合ガスを流入しながら降温させた.

4. 結果·考察

試料 1,2 **の** CVD 後の表面像を図 2 に示す. 試料 1 で は高密度に SWNTs が成長していることが確認でき, 長さ 5 μm を超える SWNTs が複数確認できた. 電極間 の距離は 3 μm~100 μm であるので,人口水晶基板を 用いて SWNTs の成長方向を制御すれば,電極間を架 橋する SWNTs の作製が期待できる.試料2ではSWNTs, 微粒子共に確認できなかった.レジスト液がディップ コート溶液のエタノールに溶けてしまったことが原因 である.溶媒を純水に変えることでこの現象を避けれ る可能性がある.

図 2 CVD 後の表面像.(a)オゾン処理後にリフトオフをした試料

1.(b)ディップコート後にリフトオフした試料 2.測定範囲はいずれも 5×5 μm²である.試料 1 で高密度に成長した SWNTs が確認できた.

5. まとめ

SiO₂/Si 基板に、ディップコート法で触媒成膜を行い、CVD 法により SWNTs を成長させた. オゾン処理 後にリフトオフした際、長さ 5 µm を超える SWNTs が複数成長した. 人口水晶基板を用いて SWNTs の成 長方向を制御すれば、電極間を架橋する SWNTs の作 製が期待できる.

6. 参考文献

[1] 飯島 澄男, 遠藤 守信, "カーボンナノチューブ・ グラフェンハンドブック", コロナ社出版(2011)

[1]Carbon Nanotubes and Their Application, edited by Q. Zhang, Pan Stanford Publishing (2012).

[2] M.M. Shulaker, et al., Nature 501 (2013) 526.

[3] Y. Cao, et al., Appl. Phys. Lett. 108 (2016) 233105.

[4]K. Ihara, H. Endoh, T. Saito and F. Nihey, Separation of Metallic and Semiconducting Single Wall Carbon Nanotube Solution by Vertical Electric Field, J. Phys. Chem. C, 115, 228827 (2011).

[5]K. Sakai *et. al.*, IEICE Trans. Electron. **E94-C** (2011) 1861

[6]D. Kawaguthi *et. al.*, 電子情報通信学会技術報告書 信学技報 116 (2016) 35.

[7]T. Tanaa, et. al., Anal. Chem. 87 (2015) 9467

1: 日大理工・院(前)・電子 2: 日大理工・学部 ・電子 3: 日大理工・教員・電子