O-10

フラストレート系スピングラス磁性体 Zn(Cr_{1-x}Ga_x)₂O₄の超音波音速測定

Ultrasound velocity measurement of frustrated spin-glass magnet Zn(Cr_{1-x}Ga_x)₂O₄

○渡邊麻衣¹, 村下正樹²,高柳和也²,渡辺忠孝³ *M. Watanabe¹, M. Murashita², K. Takayanagi², T. Watanabe³

Abstract: Frustrated spinel chromite $ZnCr_2O_4$ exhibits an antiferromagnetic transition at $T_N \sim 12$ K with cubic-to-tetragonal lattice distortion. This magnetostructual phase transition is restrained by substituting Ga for Cr. We study contribution of spin-lattice coupling to frustrated magnetism of $Zn(Cr_{1,x}Ga_x)_2O_4$ by preforming ultrasound velocity measurements in the polycrystals.

1. はじめに

物性物理学の分野において,幾何学的フラストレー ト磁性体の研究が注目を浴びている.幾何学的フラス トレーションとは,磁性原子のスピン間に強い反強磁 性相互作用が働くにも関わらず,格子の持つ幾何学的 な制約により,低温まで磁気秩序が形成されない状況 を指す.幾何学的フラストレート磁性体は強いスピン 揺らぎが生じるため,新奇かつ多彩な物性を示すこと が知られている.

スピネル酸化物*AB*₂O₄は,*A*,*B*構成元素の組み合わせ により,非常に多種類の物質の合成が可能な物質群で あり, Figure 1 に示す様に立方晶の結晶構造を有する. *B*サイトは頂点共有した四面体から成り,強い幾何学 的フラストレーションを生じさせるパイロクロア格子 を形成している.このことから,スピネル酸化物は典 型的なフラストレート磁性体であり,活発に研究が進 められている.

クロムスピネル ZnCr₂O₄は, A サイトに非磁性イオン Zn²⁺, B サイトに磁性イオン Cr³⁺が位置する結晶構造を 持ち(Figure 1), ワイス温度 $\theta_w \sim -390$ K よりもはるか に低温の $T_N \sim 12$ K で反強磁性転移を示す典型的な幾 何学的フラストレート磁性体である. ZnCr₂O₄おいては, 反強磁性転移が立方晶から正方晶への格子歪を伴って 生じるが,これは結晶の対称性を低下させることでフ ラストレーションを解消するスピンヤーンテラー転移 であると考えられている[1].

ZnCr₂O₄における磁気構造相転移(スピンヤーンテ ラー転移)は、CrサイトをGaで置換することで抑制さ れることが知られている [2]. 我々は、ZnCr₂O₄の磁気 構造相転移へのGa置換効果を研究するために、 Zn(Cr_{1x}Ga_x)₂O₄多結晶について超音波音速測定を行っ ている. この実験は, $Zn(Cr_{1,x}Ga_x)_2O_4$ のフラストレート 磁性へのスピン・格子結合の寄与を検証するものであ る. 本稿では,超音波音速測定に用いる $Zn(Cr_{1,x}Ga_x)_2O_4$ 多結晶の作製と物性評価の結果について報告する.

2. 実験方法

Zn(Cr_{1-x}Ga_x)₂O₄ 多結晶試料は,原料として ZnO 粉末, Cr₂O₃ 粉末, Ga₂O₃ 粉末を使用して,空気中, 大気封管中,真空封管中の 3 つの条件下で固相反 応法によってそれぞれ作製した.原料粉末をそれ ぞれ秤量してから混合し,4トンで 20 分間,もしく は 30 分間圧粉した後に 1100℃, 24 時間の焼成を行 った(Figure 2).

作製した試料は、粉末 X 線回折(XRD)測定により結晶構造を評価し、磁化率の温度依存性を測定

1:日大理工・学部・物理 2:日大理工・院(前)・物理 3:日大理工・教員・物理

して磁気特性を評価した.

Figure 2 . Sintering condition of polycrystalline $Zn(Cr_{1-x}Ga_x)_2O_4(x = 0.1).$

3-1. 粉末 XRD 測定

Figure 3 に作製した $Zn(Cr_{1-x}Ga_x)_2O_4(x = 0.1)$ 多結晶試料の粉末 XRD 測定の結果を示す. ほぼ単相のスピネル構造を得られていることが 分かる.

Figure 4 に Zn(Cr_{1-x}Ga_x)₂O₄ (x = 0.1)多結晶試 料における磁場中冷却(FC)とゼロ磁場冷却(ZFC) の磁化率の温度依存性を示す.高温ではキュリー ワイス則に則った振る舞いを示し, $T_N \sim 12.5$ K で 反強磁性転移を示した.

Figure 4. Magnetic susceptibility of polycrystalline $Zn(Cr_{1-x}Ga_x)_2O_4$ (x = 0.1) with H = 1000Oe as a function of temperature.

4. まとめ

超音波音速測定に用いる $Zn(Cr_{1-x}Ga_x)_2O_4(x = 0.1)$ 多結晶試料の作製と物性評価を行った. 粉末 XRD 測定により結晶構造を評価した結果, ほぼ単 相のスピネル構造であることが確認できた. 磁化 率測定により, 高温でのキュリーワイス則に則っ た振る舞いと, $T_N \sim 12.5$ K での反強磁性転移を確 認した.

現在,本稿の多結晶を用いた超音波音速測定が 進行中である.

5. 参考文献

- [1]T. Watanabe et al., Phys. Rev. B 86, 144413(2012)
- [2]W. Ratcliff II et al., Phys. Rev. B 65, 220406(R)(2002).