滑り基礎構造建物の2方向振動台実験 定常波入力時の実験結果 **Bi-Directional Shaking Table Tests on the Sliding-Foundation-Buildings Experimental Results with Stationary wave input**

○黒沼亜美¹, 國府田有加¹, 北嶋圭二², 中西三和², 安達洋³ *Ami Kuronuma¹, Yuka Koda¹, Keiji Kitajima², Mitsukazu Nakanishi², Hiroshi Adachi³

Abstract: The seismic response of a Sliding-Foundation-Building subjected to input in bi-directions has not yet been fully clarified. In this paper, Bi-Directional Shaking Table Test using a large specimen was conducted to investigate the seismic response characteristics of Sliding-Foundation-Building subjected to bi-directional inputs.

1. はじめに

本研究は、コンクリート製の人工地盤上に安価で摩 擦係数の小さな摩擦材(黒鉛粉末)を塗布することによ り、大地震時に建物へ入力される加速度が低減される

"滑り基礎構造(Fig.1)"に関するものである。滑り基礎 構造の地震応答低減効果については,既報[1],[2]により確 認されているが,2方向同時入力時の滑り基礎構造建物 の地震応答性状については、十分に解明されていると はいえない。また、これまでに実施された振動台実験で の試験体は比較的小型であり、滑り面の摩擦抵抗力の2 方向相互作用の影響や,上屋の転倒モーメントにより 生じる滑り面の摩擦抵抗力の偏りの影響等については, 十分な実験データも取得できていない。

そこで本研究では,2方向同時入力を受ける滑り基礎 構造建物の詳細な応答性状を把握するため、大型の試 験体(Photo 1)を製作して2方向振動台実験を実施する。

なお, 非定常波を入力した 際の実験結果については学会 論文^[3]にて発表しているた め,本報では定常波入力時の 実験結果について記す。

Fig.1 Sliding-Foundation-Concept

2. 試験体

試験体作製に際し,4 階建て RC 造建物を検討対象 建物として設定した。検討対象建物は、基礎板 13m× 13m, (建築面積 169m²)とし, 階高 3.5m, 軒高は 14m とした。Table 1 に検討対象建物の概要を示す。

Fig.2 に試験体概要図, Table 2 に試験体諸元を示す。 試験体の人工地盤,基礎板はともに幅 1,800mm× 1,800mm, 厚さ150mm, 重量 11.7kN のコンクリート平 板とし、片流れを防止するために高低差 15mm の 2 方 向テーパーを施した。人工地盤の上に基礎板を載置し,

人工地盤と基礎板の間には摩擦材である黒鉛粉末を約 100g(30g/m²)塗布し、基礎板を滑らせ馴染ませた。基礎 板重量は,基礎板と H 形鋼2 本で 12.9kN である。上屋 には幅 1,500mm×1,500mm, 厚さ 125mm, 重量 17.8kN の鋼板を使用した。柱は直径 23mm の PC 鋼棒(B 種 1 号)を試験体四隅に4本ずつ計16本使用し,H形鋼と 上屋鋼板と固定した。なお,柱である PC 鋼棒の総重量 は 0.7kN であり、上屋鋼板と PC 鋼棒を合わせた重量 を上屋重量(18.5kN)とした。上屋の弾性1次固有周期の 計算値は 0.46sec である。

3. 実験方法

実験は日本大学理工学部大型構造物試験センターの

2 方向振動台を使用し、人工地盤を振動台床に固定し

1:日大理工・院・(前) 海建 2:日大理工・教員・海建 3:日大名誉教授

て実施した。計測項目は、地盤・基礎板・上屋の絶対変 位と加速度, 上屋柱の PC 鋼棒のひずみである。絶対変 位は画像センサーにて、加速度は上記の画像センサー と加速度計にて、ひずみはゲージにて測定した。

入力加振波は, 定常波では, 漸増 sin 波 3 波(1.33Hz, 2.00Hz, 4.00Hz)とし, 最大加速度が 300cm/sec²となる ように変位振幅を調整した。Table 3 には振動台上で計 測した入力加振波の特性を示す。なお、定常波2方向 同時入力時の実験では位相差を 90 度として入力した。

4. 実験結果

Table 4 に、各入力波による振動台実験で記録された 地盤、基礎板および上屋の最大加速度を示す。基礎固 定の場合、一般的には上屋の加速度は地盤加速度の3 倍以上に増幅するが、いずれの入力に対しても上屋の 加速度は地盤の加速度と同程度であり、滑り基礎構造 の応答低減効果が十分に確認できる。

Fig.4 に定常波(sin 波 300ga12.0Hz)の1 方向入力時と 2 方向同時入力時の X・Y 各方向の地盤, 基礎板, 上屋 の加速度の時刻歴波形を示す。1 方向入力時の加速度 の時刻歴波形より1 方向入力時と2 方向同時入力時を 比較して2方向同時入力時の応答加速度が低減してい ることが確認できた。また、実験結果から得られた試 験体上屋の1次固有周期の値は,X方向は0.46sec,Y 方向は 0.45sec であり, 試験体設計時に想定した値とほ ぼ一致することを確認した。

Fig.5 に地盤変位のオービット示す。定常波を 90 度 の位相差で入力したため、円を描くような挙動をして いることがわかる。Fig.6 は応答履歴曲線(滑り面の摩擦 抵抗力と滑り変位の関係)を1方向入力時と2方向同時

入力時を比較して示す。1 方向入力時はほぼ一定の摩 擦抵抗力で滑っているのに対し、2 方向同時入力時に は、小さな摩擦抵抗力で滑っており、応答履歴曲線が 丸みを帯びていることが確認できる。Fig.7 に摩擦抵抗 力のオービットを, Fig.8 に基礎板の滑り変位のオービ ットを示す。1方向入力時のオービットはX・Y各1方 向入力時の値を2方向同時入力時と時間を合わせて重 ね書きしたものである。Fig.7 より、1 方向入力時は正 方形の耐力線(図中黒破線の正方形)に沿う挙動である のに対し、2 方向同時入力時は正方形の内接円の耐力 曲線(図中黒破線の円)に沿う2 方向相互作用の影響を 受けた挙動をしていることがわかる。また, Fig.8 より 地盤変位が円運動となる2方向同時入力時(Fig.5)では, 遠心力により、基礎板が地盤変位より大きな円運動を していることがわかる。

5. まとめ

滑り基礎構造建物の試験体を用いた2方向振動台実 験結果から得られた知見を以下に示す。

・1 方向入力時と比較して 2 方向同時入力時の応答が 低減していることを確認した。

 ・実地震動では起こり得ないが、地盤が円運動するよ うな挙動をした場合、2 方向同時入力時には基礎板が より大きな円運動をすることがわかった。

【参考文献】

8

4

0

-8

8

4

0

-8

擦抵抗力[kN]

摩

摩擦抵抗力[kN]

方向

 \succ

