C-7

自由電子レーザー照射によって SiO₂/Si 基板に生成された微細周期構造の元素分析

Elemental Analysis of Micro-periodic Structure in SiO₂/Si Substrate Derived from Irradiation of Free Electron Laser ○星野陽太¹、野平真義²、 岩田展幸³

Youta Hoshino¹, Masayoshi Nohira², Nobuyuki Iwata³

Abstract: In this experiment, we use EDS : Energy Dispersive X-ray Spectroscopy to observe the periodic structure of SiO2 and discuss the mechanism of structure formation. This structure is thought to have been created by the evaporation of the area.

1. 研究背景

記録装置として使用されている主なデバイスは磁気 ディスク装置(HDD)である。世界中の情報の大部分を HDD に記録されている。しかし、HDD の寿命は一般 的に数年程度であるため、数万年先に情報を残すこと は不可能である。その中で、我々が注目しているのが 5次元光記憶である。5次元光記憶では、ガラスなどの 透明誘電体に物質の構造を変化させて情報を記録する ため、理論上寿命は無限である^[1]。Ti:サファイアフェ ムト秒レーザーによって、微細周期構造を形成・形状 を制御し情報を記録する。この構造は Laser-Induced Periodic Surface Structures :LIPSS と呼ばれその構造 形成のメカニズムについては以下のような考察がなさ れている。

レーザー照射によって多格子吸収が起こり、多くの 励起子が生成されることで、高い自由電子密度が実現 する。この時、形成されるプラズモンと入射レーザー 光で混合したプラズモン・ポラリトンの固有状態とな る。このような場の中で、入射レーザーの波長に依存 した周期的な構造が形成されると予測されている。つ まり、周期構造形成のメカニズムは完全には解明され ていない^{[2][3]}。

そこで我々は、周期構造生成のメカニズムを解明す るために、波長可変(800 nm~6000 nm)の特徴を持ち、 かつフェムト秒レーザーである自由電子レーザー (FEL)を用いた。これまでに、3500 nm のマクロパルス を1パルス以上照射することで、波長と同程度の間隔 を持つ深い溝(周期構造)を SiO₂/Si 基板に生成した。走 査型プローブ顕微鏡では、穴の最奥から表面まで約 900nm であった。

2. 目的

周期構造が形成される際にSi-O結合が切断され、その一部は蒸発していると予想した。よって、生成した 周期構造内での元素分布と濃度比をエネルギー分散型 X線分析(EDS)を用いて評価した。

3. 実験方法

SiO₂(300nm)/Si 基板に 3500 nm、470 μJ/cm²の FEL を 30 分間照射した試料を用いた。走査型電子顕微鏡 (SEM)に付随する EDS 分析装置を用いて元素分析を行 った。

4. 結果

Fig.1(a)は SEM 像である。上記したように約 3500 nm の間隔で二つの深い溝が確認できる。図中 001、002 で 示す二カ所において、EDS 分析をおこなった。用いて 元素分析を行った結果である。定量分析を行った。結 果より 2 点での定量分析では図中の四角形で示した 001、002 共に、Si 原子、O 原子を示すピークを確認し た(Fig.1(b-c))。また、特定できないピークを Si(Ka)ピー クの左側、低エネルギーの位置に確認した。構造が生 成されていない基板表面の別の点では Si 原子、O 原子 を示すピーク以外は検出されなかった。

5. 考察

今回の試料では SiO2 層が 300nm であるのに対し構造 の深さは約900nmであったので構造はSi層に出来てい るはずである。しかし、EDS 分析では構造内部で O 原 子ピークが検出された。これにより以下のような考察 を行った。レーザーが試料表面に照射されることで形 成されるプラズモンと入射レーザー光で混合したプラ ズモン・ポラリトンの固有状態の中でエネルギー密度 の大きいレーザーではプラズマ中の電子やイオンを運 動させることで熱緩和される。今回用いた試料では照 射されたレーザーエネルギーが大きかった為に領域が 加熱され蒸発することで構造が出来たと考える。Fig.2 に示すように照射強度が不安定で加工領域が曖昧だと Fig.1(a)に見られるように構造周辺にリング状の盛り 上がりがみられる。^{[4][5]}それにより SiO₂ 領域が蒸発し たことで飛散しSi層に付着したのではないかと考えら れる。そのため、O原子と比べ Si原子のピーク比が大 きいのではないかと考えられる。

1:日大理工・学部・電子 2:日大理工・大学院・電子 3:日大理工・教員・電子

Figure.1 EDS image irradiated to SiO2/Si Base by 3500nm for 30 minutes

Figure.2 Sample shape against laser intensity distribution

6. まとめ

本実験により試料に生成された微細周期構造は、照 射された自由電子レーザーのエネルギー密度が大きく、 また照射強度が不安定性だったことにより熱緩和によ って領域が蒸発したことで構造が形成されたのではな いかと考えられる。対策として、厳密な光学系の構築 とレーザーのエネルギー密度を制御することが考えら れる。

7. 参考文献

- J. Zhang, et al, "Eternal 5D data storage by ultrafast laser writing in glass" SPIE 9736(4 March2016)
- Y .Shimotsuma., et al, "Self-organized nanogratings in glass irradiated by ultrashort light pulses." Phys. Rev. Lett. 91 (2003)247405.
- [3] Rudenko .A, et al, "Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin." Sci Rep 7(2017)12306
- [4] 住吉哲美"レーザー加工技術" OPTRONICS No.1(2004)
- [5] Masayuki FUJITA "Physics of Laser Materials Processing 3:Pulsewidth Dependences"レーザー加工 技術と物理 36 巻 8 号 (2007)