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Abstract: An innovative elastic wave velocity tomography algorithm based on compressed sampling (CS) is verified in this paper. 

Conventional elastic wave velocity tomography requires a lot of labor and time. However, the CS algorithm can overcome this defect. 

The basic principle is to recover the original velocity distribution from random subsampling paths. CS algorithm selects few 

quantities of paths from a large number of whole measurements. Then, in the visualization stage, the damage location and size can be 

accurately recovered by L1 minimization optimization algorithm. CS algorithm is more efficient than the conventional algorithms of 

elastic wave velocity tomography due to its greatly reduced measurement workload and high precision reconstruction. 

 

１． Introduction 

An increasing number of aging infrastructure requires 

non-destructive testing to assess its security situation, as the 

inside of concrete injure is hard to be organized. Elastic 

wave velocity tomography is a crucial part of 

non-destructive testing. Firstly, the sensor receives the 

elastic wave data, which is emitted by the transmitter in the 

measurement phase. Secondly is the visualization phase. 

The velocity distribution could be obtained through iterative 

techniques for tomographic reconstruction, such as 

algebraic reconstruction techniques(ART) and simultaneous 

iterative reconstruction techniques(SIRT). However, these 

traditional algorithms always cost a huge cost of 

computation and labor force. The CS algorithm employed in 

conventional elastic wave velocity tomography could 

overcome these drawbacks and provide accurate results. 

２． Theory of compressive sensing 

The CS theory was proposed by D. Donoho, E. Candès and 

T. Tao et al. ［１］ in 2006. This theory was proposed for a 

large amount of data collection and compression, to obtain 

the data in a compressed form instead of obtaining all the 

data and then compress it. 

  The traditional Nyquist sampling theory requires that the 

sampling frequency must be greater than twice the 

maximum frequency during sampling in order to preserve 

the integrity of the original signal. Obviously, if the signal 

frequency is relatively high, there will be a large number of 

data. The aspect of compressed sensing needs to be 

considered the sparsity of the signal rather than the 

sampling frequency. As long as the signal is sparse, the 

original signal can be recovered. The primary content of the 

theory is as follows: 

         y = ΦΨα+n = Φx+n = Θα+n              (1) 

where, y is measurement vector, x is the unknown signal, α

∈𝑅^𝑁, is the vector with K nonzero elements(K<<N, 

K-sparse), Ψ∈𝑅^𝑁× 𝑁 is the sparsity basis matrix, transfer 

matrix Θ has a dimension of m×N, the rows of matrix Θ 

are much fewer than the columns of Θ, Φ is the 

measurement matrix, and n is the noise in the process of 

measurement. Overall, the problem is to recover α from its 

measurements y, it is an undetermined ill-posed problem. 

Both signal x and transfer Θ has to meet the restricted 

isometry property(RIP) condition. Furthermore, several 

requirements should be satisfied in order to recover x from y. 

First, every column of matrix Φ must be orthogonal. Second, 

the cardinality of them should be less than K. Third, the 

measurement quantity must meet the condition as the 

following relation: m > µ·K·log(N/K), Where µ is a constant 

with a stationary value. Supposing all requests above are 

satisfied, in that case, vector x can be precisely 

reconstructed from vector y. To a broader extent, other 

random matrices like Gaussian matrix and Bernoulli matrix 

can also be used as measurement matrix to accomplish this 

procedure. 

  Then, a convex optimization algorithm in the following 

form can be utilized to solve this ill-posed problem. 

           minǁ α ǁ1 subject to ǁ Θα - yǁ2 < ε         (2) 

where ε is the noise boundry. 

３． Elastic wave velocity tomography using 

compressive sensing 

The sparsity of concrete destruction is the basis for CS 

theory to be used in this field. Based on the above statement, 

velocity distribution could be recovered to determine the 
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damage information. The product can be expressed as 

follow[2]: 

            y = Φ·(T – T0) = Φ·A·ΔS              (3) 

Where T and T0 are the measured and healthy condiction 

travel time, ΔS is the slowness vector difference between 

damaged and healthy concrete structure condiction. Sparse 

matrix Φ have some obvious characteristics[3]. Firstly, one 

and only one entry is equal to unity in each row. Secondly, 

in each column, nothing but one entry at most is equal to 

unity. The Bernoulli distribution determines these two 

properties and the value of another component of matrix Φ 

will be zero. Then, Eq.(3). could be solved by 

L1-minimization algorithm, shows as follow: 

     Δ^S = argmin(ǁΘ·ΔS - yǁ2 +λǁΔSǁ1), Θ = Φ·A     (4) 

Where Δ^S is reconstructed slowness and λ is the Lagrange 

multiplier in the ℓ1-minimization algorithm. 

４． Simulation result and analysis 

In order to verify the CS algorithm is practicable or not, it is 

essential to compare the CS algorithm with the traditional 

SIRT algorithm numeral results. The basic information of 

the model is as follows: the size of the concrete slab is 

10*10m. The specimen meshed as 10*10 as well. Twenty 

sensors are arranged around the whole model. The events 

are 100 random elastic waves and the signal at the speed of 

4000m/s in concrete generally. The original velocity 

distribution is 4000m/s in healthy condiction and receivers 

location shown in Figure1.  

 

 

 

 

 

Figure 1. Original velocity distribution and Receivers location 

Based on the above ideas and situation, it is crucial to 

conduct CS theory in a conventional elastic wave velocity 

model. Due to the destruction characteristics of concrete 

structures, most of the sample is healthy, and the damaged 

areas are very sparse. The random matrix Φ adopted 50 

measurement paths from 2000 totality.  The choice of the 

number of the paths must satisfy m>u·K·log(N/K), then the 

size of Φ is 50*2000, and the size of Θ is 50*100. Both 

meet the RIP and incoherence conditions. Compared with 

traditional algorithm, CS algorithm choice 50 paths is far 

less than 2000 original samples. Then, the reconstructive 

slowness is solved by L1- minimization optimization 

algorithm.  

 

 

 

(a)                     (b) 

Figure 2. Damage detection of the simulation model (a) 

Reconstruction result by CS algorithm. (b) Iteration result by SIRT. 

  The results in figure2 show that the red part is the 

damaged objective, and the blue part is the healthy 

condiction, which has healthy velocity distribution. Figure 

2.(b) clearly shows that the SIRT iteration result could 

distinguish the damage target set in advance. Compared 

with the traditional SIRT algorithm, the CS algorithm could 

recover the location and size of damage use much fewer 

measurement data(only 50 paths) than the total(2000 paths).  

５． Conclusion 

This paper compares the CS algorithm with the traditional 

algorithm in elastic wave tomography. The results show that 

the innovative algorithm can accurately restore the 

localization and range of the concrete damage with a 

massive decrease of measurement samples which 

effectively improves detection efficiency.  

６． References 

[1] Candès EJ, Wakin MB. An introduction to compressive 

sampling. IEEE Signal Processing Magazine. 2008; 

25(2):21±30. 

[2] Jiang B, Zhao W, Wang W. Improved Ultrasonic 

Computerized Tomography Method for STS (Steel Tube 

Slab) Structure Based on Compressive Sampling Algorithm. 

Applied Sciences. 2017; 7(5):432. 

[3] Wang, Wentao, et al. "The study of compressive 

sampling in ultrasonic computerized tomography." 

Structural Health Monitoring and Inspection of Advanced 

Materials, Aerospace, and Civil Infrastructure 2015. Vol. 

9437. International Society for Optics and Photonics, 2015. 

令和 3年度　日本大学理工学部　学術講演会予稿集

 414


